--- library_name: transformers license: apache-2.0 base_model: microsoft/resnet-50 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: cat_dog_classifier_with_small_datasest results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8714285714285714 --- # cat_dog_classifier_with_small_datasest This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3807 - Accuracy: 0.8714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 140 | 0.6967 | 0.4929 | | No log | 2.0 | 280 | 0.6870 | 0.5357 | | No log | 3.0 | 420 | 0.6729 | 0.6214 | | 0.6818 | 4.0 | 560 | 0.6306 | 0.7429 | | 0.6818 | 5.0 | 700 | 0.5554 | 0.8714 | | 0.6818 | 6.0 | 840 | 0.4894 | 0.8429 | | 0.6818 | 7.0 | 980 | 0.4511 | 0.8286 | | 0.5676 | 8.0 | 1120 | 0.4113 | 0.8643 | | 0.5676 | 9.0 | 1260 | 0.4318 | 0.8643 | | 0.5676 | 10.0 | 1400 | 0.3807 | 0.8714 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0