MohamedRashad commited on
Commit
4cb2dc4
·
verified ·
1 Parent(s): 85baa5b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -74,7 +74,7 @@ from transformers import VoxtralForConditionalGeneration, AutoProcessor
74
  import torch
75
 
76
  device = "cuda"
77
- repo_id = "mistralai/Voxtral-Mini-3B-2507"
78
 
79
  processor = AutoProcessor.from_pretrained(repo_id)
80
  model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
@@ -118,7 +118,7 @@ from transformers import VoxtralForConditionalGeneration, AutoProcessor
118
  import torch
119
 
120
  device = "cuda"
121
- repo_id = "mistralai/Voxtral-Mini-3B-2507"
122
 
123
  processor = AutoProcessor.from_pretrained(repo_id)
124
  model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
@@ -176,7 +176,7 @@ from transformers import VoxtralForConditionalGeneration, AutoProcessor
176
  import torch
177
 
178
  device = "cuda"
179
- repo_id = "mistralai/Voxtral-Mini-3B-2507"
180
 
181
  processor = AutoProcessor.from_pretrained(repo_id)
182
  model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
@@ -215,7 +215,7 @@ from transformers import VoxtralForConditionalGeneration, AutoProcessor
215
  import torch
216
 
217
  device = "cuda"
218
- repo_id = "mistralai/Voxtral-Mini-3B-2507"
219
 
220
  processor = AutoProcessor.from_pretrained(repo_id)
221
  model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
@@ -254,7 +254,7 @@ from transformers import VoxtralForConditionalGeneration, AutoProcessor
254
  import torch
255
 
256
  device = "cuda"
257
- repo_id = "mistralai/Voxtral-Mini-3B-2507"
258
 
259
  processor = AutoProcessor.from_pretrained(repo_id)
260
  model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
@@ -317,7 +317,7 @@ from transformers import VoxtralForConditionalGeneration, AutoProcessor
317
  import torch
318
 
319
  device = "cuda"
320
- repo_id = "mistralai/Voxtral-Mini-3B-2507"
321
 
322
  processor = AutoProcessor.from_pretrained(repo_id)
323
  model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
 
74
  import torch
75
 
76
  device = "cuda"
77
+ repo_id = "MohamedRashad/Voxtral-Mini-3B-2507-transformers"
78
 
79
  processor = AutoProcessor.from_pretrained(repo_id)
80
  model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
 
118
  import torch
119
 
120
  device = "cuda"
121
+ repo_id = "MohamedRashad/Voxtral-Mini-3B-2507-transformers"
122
 
123
  processor = AutoProcessor.from_pretrained(repo_id)
124
  model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
 
176
  import torch
177
 
178
  device = "cuda"
179
+ repo_id = "MohamedRashad/Voxtral-Mini-3B-2507-transformers"
180
 
181
  processor = AutoProcessor.from_pretrained(repo_id)
182
  model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
 
215
  import torch
216
 
217
  device = "cuda"
218
+ repo_id = "MohamedRashad/Voxtral-Mini-3B-2507-transformers"
219
 
220
  processor = AutoProcessor.from_pretrained(repo_id)
221
  model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
 
254
  import torch
255
 
256
  device = "cuda"
257
+ repo_id = "MohamedRashad/Voxtral-Mini-3B-2507-transformers"
258
 
259
  processor = AutoProcessor.from_pretrained(repo_id)
260
  model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)
 
317
  import torch
318
 
319
  device = "cuda"
320
+ repo_id = "MohamedRashad/Voxtral-Mini-3B-2507-transformers"
321
 
322
  processor = AutoProcessor.from_pretrained(repo_id)
323
  model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)