Commit
·
2ccf7f0
1
Parent(s):
1f0b35f
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 259.25 +/- 21.97
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0ad138d4c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0ad138d550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0ad138d5e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0ad138d670>", "_build": "<function ActorCriticPolicy._build at 0x7f0ad138d700>", "forward": "<function ActorCriticPolicy.forward at 0x7f0ad138d790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0ad138d820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0ad138d8b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0ad138d940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0ad138d9d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0ad138da60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0ad138daf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0ad138cbc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679051889551444580, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE0ttj3DGQS6pJ0ROuSxuDkS5GM6fTqhugAAgD8AAAAAI86zPtWVXj/PzUs+wnD6voShkT4CSY08AAAAAAAAAAAzynA9OlbKPnz7xzwP94O+nJ5KPd0SobwAAAAAAAAAAEABuT3v7k8/AFXjPZPd977YJ8I9WkzuuwAAAAAAAAAAs+FQPYdoKT+zo+q8GebFvh1Fdj1FR3s9AAAAAAAAAADzExQ+S8V7P4bmWj6DbPS+IVb1Pb1qNr0AAAAAAAAAADO9f7xa7Ks/O2IWvqfM076C4xe8BgmvvQAAAAAAAAAAAAhCPHsiwLq6dRi5ZLiVtUFiBTkN2S04AACAPwAAgD+bsaa+fTFaP5ip174CH4q+xWOavkhHib0AAAAAAAAAAH1kpD5LHQ8/8suhPbnix76QkkY+oFCvvQAAAAAAAAAAZuZ5u8iGpj8eqBi9FOvkvhXewTk7Id87AAAAAAAAAACzm7E9DVR0P20LHD3O9OC+1qdfPcbtqb0AAAAAAAAAAPVVgb4v438/rm3BvpB0zr4duXq+ba5qvQAAAAAAAAAATcJ2vde7Tzwa4NO9H6cjvtQaV7xdRlu9AAAAAAAAAAD73rm+lVyKP8WAk74dQcW+72WfviZkjT0AAAAAAAAAAABc4LtkhWE+hgBsvt46tb1LbUa9BtUEvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9+Y3TPRDcUCUhpRSlIwBbJRNWAGMAXSUR0CR95Y6XBxhdX2UKGgGaAloD0MIKh4X1eKnckCUhpRSlGgVTS4BaBZHQJH321lXiit1fZQoaAZoCWgPQwjri4S23A9xQJSGlFKUaBVNMwFoFkdAkfgtP557gXV9lChoBmgJaA9DCJFj6xkCy3BAlIaUUpRoFU0IAWgWR0CR+GoPkJa8dX2UKGgGaAloD0MI+yDLgskOckCUhpRSlGgVTVsBaBZHQJH41Kxs2vV1fZQoaAZoCWgPQwiZYg6CDn9tQJSGlFKUaBVNIwFoFkdAkflVOsT37HV9lChoBmgJaA9DCJj4o6izQ3FAlIaUUpRoFU1BAWgWR0CR+k25xzaLdX2UKGgGaAloD0MIn+i68ENockCUhpRSlGgVTWYBaBZHQJH65eMQ2/B1fZQoaAZoCWgPQwiFzJVBdXVxQJSGlFKUaBVNCgFoFkdAkfs72HtWuHV9lChoBmgJaA9DCGrdBrWfqnJAlIaUUpRoFU1bAWgWR0CR+0h7VrhzdX2UKGgGaAloD0MI9KeN6nSDcECUhpRSlGgVTRgBaBZHQJH7ouL74zt1fZQoaAZoCWgPQwiK5CuBVF5xQJSGlFKUaBVNLgJoFkdAkf0eYMOPNnV9lChoBmgJaA9DCMbBpWMOMHJAlIaUUpRoFU0nAWgWR0CR/SR2bG3ndX2UKGgGaAloD0MIAz+qYb9IbkCUhpRSlGgVTT4BaBZHQJH96RLbpNd1fZQoaAZoCWgPQwi77q1IDF1wQJSGlFKUaBVNSAFoFkdAkf7tQGfPHHV9lChoBmgJaA9DCHXJOEbynXJAlIaUUpRoFU0UAWgWR0CR/yg4OtnxdX2UKGgGaAloD0MIdv9YiI7scUCUhpRSlGgVTS4BaBZHQJH/ne40/GF1fZQoaAZoCWgPQwiWzRySWl5wQJSGlFKUaBVNBQFoFkdAkf/hd6cAinV9lChoBmgJaA9DCGYQH9gxY3JAlIaUUpRoFU1QAWgWR0CSAI0MgEEDdX2UKGgGaAloD0MIYMsr19vQbkCUhpRSlGgVTT0BaBZHQJIAsrmQr+Z1fZQoaAZoCWgPQwhTsTGvI2NwQJSGlFKUaBVNFAFoFkdAkgDgksz2vnV9lChoBmgJaA9DCPCmW3YID3FAlIaUUpRoFUvwaBZHQJIA9aJQ+EB1fZQoaAZoCWgPQwjNyYtMAABxQJSGlFKUaBVNRQFoFkdAkgEiiItUXHV9lChoBmgJaA9DCD+rzJRWCm9AlIaUUpRoFU0UAWgWR0CSAkDfWMCLdX2UKGgGaAloD0MIkUdwI2UVbUCUhpRSlGgVTREBaBZHQJICfwkPczt1fZQoaAZoCWgPQwi2Z5YEqKtxQJSGlFKUaBVNJwFoFkdAkgUBczImxHV9lChoBmgJaA9DCDrNAu0OgmxAlIaUUpRoFU1qAWgWR0CSBPgg5imVdX2UKGgGaAloD0MIxTnq6DgGb0CUhpRSlGgVTV4BaBZHQJIFBa8pTdd1fZQoaAZoCWgPQwjDYtS1djxzQJSGlFKUaBVNTgFoFkdAkgb0GNaQm3V9lChoBmgJaA9DCGWmtP6WPEdAlIaUUpRoFUvtaBZHQJIG8v9LpRp1fZQoaAZoCWgPQwiiYweVuKNwQJSGlFKUaBVNDwFoFkdAkgcVbFCLM3V9lChoBmgJaA9DCFa2D3nLMXBAlIaUUpRoFU0zAWgWR0CSB2p2ECeVdX2UKGgGaAloD0MIqMgh4uZBcECUhpRSlGgVTRUBaBZHQJIH6C17Y051fZQoaAZoCWgPQwj+gXLbftlxQJSGlFKUaBVNhgFoFkdAkgfAmzByj3V9lChoBmgJaA9DCC+jWG7p+29AlIaUUpRoFU1NAWgWR0CSB+V6NVBEdX2UKGgGaAloD0MIiSR6GcXfcECUhpRSlGgVTRkBaBZHQJIIWApazNV1fZQoaAZoCWgPQwgq4nSSbfZwQJSGlFKUaBVNPgFoFkdAkgkpxvNu+HV9lChoBmgJaA9DCJUNayoLRG5AlIaUUpRoFU1TAWgWR0CSCfl2/zredX2UKGgGaAloD0MI9KW3P5d/a0CUhpRSlGgVTSUBaBZHQJIKYQ176YV1fZQoaAZoCWgPQwgXmus0UhdwQJSGlFKUaBVNLAFoFkdAkgpPqX4TK3V9lChoBmgJaA9DCKvRqwHK8nBAlIaUUpRoFU0XAWgWR0CSDGY3vQWvdX2UKGgGaAloD0MIYvay7bT5RUCUhpRSlGgVS9poFkdAkgy+7g88tHV9lChoBmgJaA9DCEGchxOYhHJAlIaUUpRoFU09AWgWR0CSIgcer+5wdX2UKGgGaAloD0MIi4wOSMI+TUCUhpRSlGgVS9hoFkdAkiIPBzmwJXV9lChoBmgJaA9DCLStZp1xKW5AlIaUUpRoFU1IAWgWR0CSIqf8/D+BdX2UKGgGaAloD0MI2PSgoFQScECUhpRSlGgVTQUBaBZHQJIkOHXVbzN1fZQoaAZoCWgPQwie7dEb7k9wQJSGlFKUaBVNIgFoFkdAkiSteIEbHnV9lChoBmgJaA9DCNBGrptSRm5AlIaUUpRoFU1eAWgWR0CSJrAMlTm5dX2UKGgGaAloD0MIPusaLYcLcECUhpRSlGgVTQYBaBZHQJImvYQJ5Vx1fZQoaAZoCWgPQwi37uapjmVyQJSGlFKUaBVNMAFoFkdAkicl81Gb1HV9lChoBmgJaA9DCEbNV8kHoXJAlIaUUpRoFU1sAWgWR0CSJ1mO2iL3dX2UKGgGaAloD0MIoKTAAhiHcECUhpRSlGgVTQMBaBZHQJIojx9XtBx1fZQoaAZoCWgPQwjlmZfDbrtxQJSGlFKUaBVNlAFoFkdAkiomjKxLTXV9lChoBmgJaA9DCNGRXP7DYXJAlIaUUpRoFU0xAWgWR0CSKkEwnH/+dX2UKGgGaAloD0MIQURq2sU5cECUhpRSlGgVTV4BaBZHQJIrI176YVt1fZQoaAZoCWgPQwghdqbQuQdwQJSGlFKUaBVNHgFoFkdAkivoi1RceXV9lChoBmgJaA9DCJqUgm6vwm9AlIaUUpRoFU05AWgWR0CSLgpIMBp6dX2UKGgGaAloD0MIqU2c3C+IckCUhpRSlGgVTVYBaBZHQJIuG+qR2bJ1fZQoaAZoCWgPQwipoQ3ARk9yQJSGlFKUaBVNPAFoFkdAki59VNpM6HV9lChoBmgJaA9DCH2vIThuenJAlIaUUpRoFU1MAWgWR0CSLqJ1q33IdX2UKGgGaAloD0MIQ5JZvcOnTUCUhpRSlGgVS+poFkdAki6xcE/0NHV9lChoBmgJaA9DCE32z9OANXJAlIaUUpRoFU0lAWgWR0CSLscf/3nIdX2UKGgGaAloD0MIdTqQ9dTBcUCUhpRSlGgVS/loFkdAki8Fd1MdtHV9lChoBmgJaA9DCKK1os0x3XBAlIaUUpRoFU1FAWgWR0CSL+NH6MzedX2UKGgGaAloD0MImbwBZn5qcECUhpRSlGgVTRUBaBZHQJIv9/4Irvt1fZQoaAZoCWgPQwgR5QtaSMxPQJSGlFKUaBVL+mgWR0CSMDEAHVwxdX2UKGgGaAloD0MIdv7tsl/7SECUhpRSlGgVS/JoFkdAkjEcBMi8nXV9lChoBmgJaA9DCMObNXjfeHBAlIaUUpRoFU1OAWgWR0CSMaL2HtWudX2UKGgGaAloD0MIrwlpjUE1Q0CUhpRSlGgVS91oFkdAkjIboB7u2XV9lChoBmgJaA9DCFJflnZqYmNAlIaUUpRoFU3oA2gWR0CSMk3x4IKMdX2UKGgGaAloD0MIOnXls7ykbkCUhpRSlGgVTUkBaBZHQJIzMqPOpsJ1fZQoaAZoCWgPQwhUceMWc1VwQJSGlFKUaBVNLQFoFkdAkjNsX3xnWnV9lChoBmgJaA9DCI4/UdlwIXBAlIaUUpRoFU0ZAWgWR0CSNaJMxoIwdX2UKGgGaAloD0MIvqQxWkeJbUCUhpRSlGgVTQEBaBZHQJI1sE2YOUd1fZQoaAZoCWgPQwgIWoEhq+9CQJSGlFKUaBVL1WgWR0CSNcPwuuifdX2UKGgGaAloD0MI2H+dm7bvckCUhpRSlGgVTRcBaBZHQJI2p5dGAkN1fZQoaAZoCWgPQwjoTrD/uqxwQJSGlFKUaBVNMQFoFkdAkjbzvE0iyXV9lChoBmgJaA9DCO2cZoG2/nFAlIaUUpRoFU0GAWgWR0CSNyH0se4kdX2UKGgGaAloD0MIjgQabOrCcECUhpRSlGgVTT4BaBZHQJI3Me0Xxe91fZQoaAZoCWgPQwhYObTI9hFwQJSGlFKUaBVNUAFoFkdAkjdTINmUW3V9lChoBmgJaA9DCIUHza67z3JAlIaUUpRoFU1GAWgWR0CSN5XAuZkTdX2UKGgGaAloD0MInBn9aHhQcUCUhpRSlGgVTQEBaBZHQJI4G15Sm651fZQoaAZoCWgPQwh/2T15mC1wQJSGlFKUaBVNCwFoFkdAkjmWtlqagHV9lChoBmgJaA9DCIOkT6vou3BAlIaUUpRoFU0sAWgWR0CSObfh/Aj6dX2UKGgGaAloD0MIMEllinlZcUCUhpRSlGgVTWoBaBZHQJI54/9pAUt1fZQoaAZoCWgPQwhfJoqQ+gVxQJSGlFKUaBVNMQFoFkdAkjpI6XBxgnV9lChoBmgJaA9DCAPS/gcYnnJAlIaUUpRoFU0TAWgWR0CSOtCrLhaUdX2UKGgGaAloD0MIMV9egH1IcECUhpRSlGgVTRoBaBZHQJI6xlum78N1fZQoaAZoCWgPQwhgBfhuc2xuQJSGlFKUaBVNGgFoFkdAkjz7RjSXt3V9lChoBmgJaA9DCLRZ9bnakG9AlIaUUpRoFU03AWgWR0CSPhY287IUdX2UKGgGaAloD0MIy74rgv/Ma0CUhpRSlGgVTSIBaBZHQJI+0hC+lCV1fZQoaAZoCWgPQwhVppiDYPdwQJSGlFKUaBVNGQFoFkdAkj7RnvlU63V9lChoBmgJaA9DCIYfnE+d1G9AlIaUUpRoFU0TAWgWR0CSPxftQbdadX2UKGgGaAloD0MIzT6PUd4nckCUhpRSlGgVTU0BaBZHQJI++Xw9aEB1fZQoaAZoCWgPQwhntiv0gYpyQJSGlFKUaBVNMgFoFkdAkj9+DWbw0HV9lChoBmgJaA9DCM1aCkg7XHBAlIaUUpRoFU0pAWgWR0CSP29iMHbAdX2UKGgGaAloD0MID0QWaeKfTkCUhpRSlGgVS8hoFkdAkj+fwEyLynV9lChoBmgJaA9DCJXVdD0RqHBAlIaUUpRoFU1FAWgWR0CSP45xiobXdX2UKGgGaAloD0MIo1huaXUqcUCUhpRSlGgVTS8BaBZHQJJAYPz4DcN1fZQoaAZoCWgPQwjEzD6P0RhxQJSGlFKUaBVL9GgWR0CSQHlzU7SzdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62b5d70a9f4d13084c839dc14cc142f845ddaef1492ef081fd4b76cae498e3ed
|
3 |
+
size 147413
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f0ad138d4c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0ad138d550>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0ad138d5e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0ad138d670>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f0ad138d700>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f0ad138d790>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0ad138d820>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0ad138d8b0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f0ad138d940>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0ad138d9d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0ad138da60>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0ad138daf0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f0ad138cbc0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1679051889551444580,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE0ttj3DGQS6pJ0ROuSxuDkS5GM6fTqhugAAgD8AAAAAI86zPtWVXj/PzUs+wnD6voShkT4CSY08AAAAAAAAAAAzynA9OlbKPnz7xzwP94O+nJ5KPd0SobwAAAAAAAAAAEABuT3v7k8/AFXjPZPd977YJ8I9WkzuuwAAAAAAAAAAs+FQPYdoKT+zo+q8GebFvh1Fdj1FR3s9AAAAAAAAAADzExQ+S8V7P4bmWj6DbPS+IVb1Pb1qNr0AAAAAAAAAADO9f7xa7Ks/O2IWvqfM076C4xe8BgmvvQAAAAAAAAAAAAhCPHsiwLq6dRi5ZLiVtUFiBTkN2S04AACAPwAAgD+bsaa+fTFaP5ip174CH4q+xWOavkhHib0AAAAAAAAAAH1kpD5LHQ8/8suhPbnix76QkkY+oFCvvQAAAAAAAAAAZuZ5u8iGpj8eqBi9FOvkvhXewTk7Id87AAAAAAAAAACzm7E9DVR0P20LHD3O9OC+1qdfPcbtqb0AAAAAAAAAAPVVgb4v438/rm3BvpB0zr4duXq+ba5qvQAAAAAAAAAATcJ2vde7Tzwa4NO9H6cjvtQaV7xdRlu9AAAAAAAAAAD73rm+lVyKP8WAk74dQcW+72WfviZkjT0AAAAAAAAAAABc4LtkhWE+hgBsvt46tb1LbUa9BtUEvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9+Y3TPRDcUCUhpRSlIwBbJRNWAGMAXSUR0CR95Y6XBxhdX2UKGgGaAloD0MIKh4X1eKnckCUhpRSlGgVTS4BaBZHQJH321lXiit1fZQoaAZoCWgPQwjri4S23A9xQJSGlFKUaBVNMwFoFkdAkfgtP557gXV9lChoBmgJaA9DCJFj6xkCy3BAlIaUUpRoFU0IAWgWR0CR+GoPkJa8dX2UKGgGaAloD0MI+yDLgskOckCUhpRSlGgVTVsBaBZHQJH41Kxs2vV1fZQoaAZoCWgPQwiZYg6CDn9tQJSGlFKUaBVNIwFoFkdAkflVOsT37HV9lChoBmgJaA9DCJj4o6izQ3FAlIaUUpRoFU1BAWgWR0CR+k25xzaLdX2UKGgGaAloD0MIn+i68ENockCUhpRSlGgVTWYBaBZHQJH65eMQ2/B1fZQoaAZoCWgPQwiFzJVBdXVxQJSGlFKUaBVNCgFoFkdAkfs72HtWuHV9lChoBmgJaA9DCGrdBrWfqnJAlIaUUpRoFU1bAWgWR0CR+0h7VrhzdX2UKGgGaAloD0MI9KeN6nSDcECUhpRSlGgVTRgBaBZHQJH7ouL74zt1fZQoaAZoCWgPQwiK5CuBVF5xQJSGlFKUaBVNLgJoFkdAkf0eYMOPNnV9lChoBmgJaA9DCMbBpWMOMHJAlIaUUpRoFU0nAWgWR0CR/SR2bG3ndX2UKGgGaAloD0MIAz+qYb9IbkCUhpRSlGgVTT4BaBZHQJH96RLbpNd1fZQoaAZoCWgPQwi77q1IDF1wQJSGlFKUaBVNSAFoFkdAkf7tQGfPHHV9lChoBmgJaA9DCHXJOEbynXJAlIaUUpRoFU0UAWgWR0CR/yg4OtnxdX2UKGgGaAloD0MIdv9YiI7scUCUhpRSlGgVTS4BaBZHQJH/ne40/GF1fZQoaAZoCWgPQwiWzRySWl5wQJSGlFKUaBVNBQFoFkdAkf/hd6cAinV9lChoBmgJaA9DCGYQH9gxY3JAlIaUUpRoFU1QAWgWR0CSAI0MgEEDdX2UKGgGaAloD0MIYMsr19vQbkCUhpRSlGgVTT0BaBZHQJIAsrmQr+Z1fZQoaAZoCWgPQwhTsTGvI2NwQJSGlFKUaBVNFAFoFkdAkgDgksz2vnV9lChoBmgJaA9DCPCmW3YID3FAlIaUUpRoFUvwaBZHQJIA9aJQ+EB1fZQoaAZoCWgPQwjNyYtMAABxQJSGlFKUaBVNRQFoFkdAkgEiiItUXHV9lChoBmgJaA9DCD+rzJRWCm9AlIaUUpRoFU0UAWgWR0CSAkDfWMCLdX2UKGgGaAloD0MIkUdwI2UVbUCUhpRSlGgVTREBaBZHQJICfwkPczt1fZQoaAZoCWgPQwi2Z5YEqKtxQJSGlFKUaBVNJwFoFkdAkgUBczImxHV9lChoBmgJaA9DCDrNAu0OgmxAlIaUUpRoFU1qAWgWR0CSBPgg5imVdX2UKGgGaAloD0MIxTnq6DgGb0CUhpRSlGgVTV4BaBZHQJIFBa8pTdd1fZQoaAZoCWgPQwjDYtS1djxzQJSGlFKUaBVNTgFoFkdAkgb0GNaQm3V9lChoBmgJaA9DCGWmtP6WPEdAlIaUUpRoFUvtaBZHQJIG8v9LpRp1fZQoaAZoCWgPQwiiYweVuKNwQJSGlFKUaBVNDwFoFkdAkgcVbFCLM3V9lChoBmgJaA9DCFa2D3nLMXBAlIaUUpRoFU0zAWgWR0CSB2p2ECeVdX2UKGgGaAloD0MIqMgh4uZBcECUhpRSlGgVTRUBaBZHQJIH6C17Y051fZQoaAZoCWgPQwj+gXLbftlxQJSGlFKUaBVNhgFoFkdAkgfAmzByj3V9lChoBmgJaA9DCC+jWG7p+29AlIaUUpRoFU1NAWgWR0CSB+V6NVBEdX2UKGgGaAloD0MIiSR6GcXfcECUhpRSlGgVTRkBaBZHQJIIWApazNV1fZQoaAZoCWgPQwgq4nSSbfZwQJSGlFKUaBVNPgFoFkdAkgkpxvNu+HV9lChoBmgJaA9DCJUNayoLRG5AlIaUUpRoFU1TAWgWR0CSCfl2/zredX2UKGgGaAloD0MI9KW3P5d/a0CUhpRSlGgVTSUBaBZHQJIKYQ176YV1fZQoaAZoCWgPQwgXmus0UhdwQJSGlFKUaBVNLAFoFkdAkgpPqX4TK3V9lChoBmgJaA9DCKvRqwHK8nBAlIaUUpRoFU0XAWgWR0CSDGY3vQWvdX2UKGgGaAloD0MIYvay7bT5RUCUhpRSlGgVS9poFkdAkgy+7g88tHV9lChoBmgJaA9DCEGchxOYhHJAlIaUUpRoFU09AWgWR0CSIgcer+5wdX2UKGgGaAloD0MIi4wOSMI+TUCUhpRSlGgVS9hoFkdAkiIPBzmwJXV9lChoBmgJaA9DCLStZp1xKW5AlIaUUpRoFU1IAWgWR0CSIqf8/D+BdX2UKGgGaAloD0MI2PSgoFQScECUhpRSlGgVTQUBaBZHQJIkOHXVbzN1fZQoaAZoCWgPQwie7dEb7k9wQJSGlFKUaBVNIgFoFkdAkiSteIEbHnV9lChoBmgJaA9DCNBGrptSRm5AlIaUUpRoFU1eAWgWR0CSJrAMlTm5dX2UKGgGaAloD0MIPusaLYcLcECUhpRSlGgVTQYBaBZHQJImvYQJ5Vx1fZQoaAZoCWgPQwi37uapjmVyQJSGlFKUaBVNMAFoFkdAkicl81Gb1HV9lChoBmgJaA9DCEbNV8kHoXJAlIaUUpRoFU1sAWgWR0CSJ1mO2iL3dX2UKGgGaAloD0MIoKTAAhiHcECUhpRSlGgVTQMBaBZHQJIojx9XtBx1fZQoaAZoCWgPQwjlmZfDbrtxQJSGlFKUaBVNlAFoFkdAkiomjKxLTXV9lChoBmgJaA9DCNGRXP7DYXJAlIaUUpRoFU0xAWgWR0CSKkEwnH/+dX2UKGgGaAloD0MIQURq2sU5cECUhpRSlGgVTV4BaBZHQJIrI176YVt1fZQoaAZoCWgPQwghdqbQuQdwQJSGlFKUaBVNHgFoFkdAkivoi1RceXV9lChoBmgJaA9DCJqUgm6vwm9AlIaUUpRoFU05AWgWR0CSLgpIMBp6dX2UKGgGaAloD0MIqU2c3C+IckCUhpRSlGgVTVYBaBZHQJIuG+qR2bJ1fZQoaAZoCWgPQwipoQ3ARk9yQJSGlFKUaBVNPAFoFkdAki59VNpM6HV9lChoBmgJaA9DCH2vIThuenJAlIaUUpRoFU1MAWgWR0CSLqJ1q33IdX2UKGgGaAloD0MIQ5JZvcOnTUCUhpRSlGgVS+poFkdAki6xcE/0NHV9lChoBmgJaA9DCE32z9OANXJAlIaUUpRoFU0lAWgWR0CSLscf/3nIdX2UKGgGaAloD0MIdTqQ9dTBcUCUhpRSlGgVS/loFkdAki8Fd1MdtHV9lChoBmgJaA9DCKK1os0x3XBAlIaUUpRoFU1FAWgWR0CSL+NH6MzedX2UKGgGaAloD0MImbwBZn5qcECUhpRSlGgVTRUBaBZHQJIv9/4Irvt1fZQoaAZoCWgPQwgR5QtaSMxPQJSGlFKUaBVL+mgWR0CSMDEAHVwxdX2UKGgGaAloD0MIdv7tsl/7SECUhpRSlGgVS/JoFkdAkjEcBMi8nXV9lChoBmgJaA9DCMObNXjfeHBAlIaUUpRoFU1OAWgWR0CSMaL2HtWudX2UKGgGaAloD0MIrwlpjUE1Q0CUhpRSlGgVS91oFkdAkjIboB7u2XV9lChoBmgJaA9DCFJflnZqYmNAlIaUUpRoFU3oA2gWR0CSMk3x4IKMdX2UKGgGaAloD0MIOnXls7ykbkCUhpRSlGgVTUkBaBZHQJIzMqPOpsJ1fZQoaAZoCWgPQwhUceMWc1VwQJSGlFKUaBVNLQFoFkdAkjNsX3xnWnV9lChoBmgJaA9DCI4/UdlwIXBAlIaUUpRoFU0ZAWgWR0CSNaJMxoIwdX2UKGgGaAloD0MIvqQxWkeJbUCUhpRSlGgVTQEBaBZHQJI1sE2YOUd1fZQoaAZoCWgPQwgIWoEhq+9CQJSGlFKUaBVL1WgWR0CSNcPwuuifdX2UKGgGaAloD0MI2H+dm7bvckCUhpRSlGgVTRcBaBZHQJI2p5dGAkN1fZQoaAZoCWgPQwjoTrD/uqxwQJSGlFKUaBVNMQFoFkdAkjbzvE0iyXV9lChoBmgJaA9DCO2cZoG2/nFAlIaUUpRoFU0GAWgWR0CSNyH0se4kdX2UKGgGaAloD0MIjgQabOrCcECUhpRSlGgVTT4BaBZHQJI3Me0Xxe91fZQoaAZoCWgPQwhYObTI9hFwQJSGlFKUaBVNUAFoFkdAkjdTINmUW3V9lChoBmgJaA9DCIUHza67z3JAlIaUUpRoFU1GAWgWR0CSN5XAuZkTdX2UKGgGaAloD0MInBn9aHhQcUCUhpRSlGgVTQEBaBZHQJI4G15Sm651fZQoaAZoCWgPQwh/2T15mC1wQJSGlFKUaBVNCwFoFkdAkjmWtlqagHV9lChoBmgJaA9DCIOkT6vou3BAlIaUUpRoFU0sAWgWR0CSObfh/Aj6dX2UKGgGaAloD0MIMEllinlZcUCUhpRSlGgVTWoBaBZHQJI54/9pAUt1fZQoaAZoCWgPQwhfJoqQ+gVxQJSGlFKUaBVNMQFoFkdAkjpI6XBxgnV9lChoBmgJaA9DCAPS/gcYnnJAlIaUUpRoFU0TAWgWR0CSOtCrLhaUdX2UKGgGaAloD0MIMV9egH1IcECUhpRSlGgVTRoBaBZHQJI6xlum78N1fZQoaAZoCWgPQwhgBfhuc2xuQJSGlFKUaBVNGgFoFkdAkjz7RjSXt3V9lChoBmgJaA9DCLRZ9bnakG9AlIaUUpRoFU03AWgWR0CSPhY287IUdX2UKGgGaAloD0MIy74rgv/Ma0CUhpRSlGgVTSIBaBZHQJI+0hC+lCV1fZQoaAZoCWgPQwhVppiDYPdwQJSGlFKUaBVNGQFoFkdAkj7RnvlU63V9lChoBmgJaA9DCIYfnE+d1G9AlIaUUpRoFU0TAWgWR0CSPxftQbdadX2UKGgGaAloD0MIzT6PUd4nckCUhpRSlGgVTU0BaBZHQJI++Xw9aEB1fZQoaAZoCWgPQwhntiv0gYpyQJSGlFKUaBVNMgFoFkdAkj9+DWbw0HV9lChoBmgJaA9DCM1aCkg7XHBAlIaUUpRoFU0pAWgWR0CSP29iMHbAdX2UKGgGaAloD0MID0QWaeKfTkCUhpRSlGgVS8hoFkdAkj+fwEyLynV9lChoBmgJaA9DCJXVdD0RqHBAlIaUUpRoFU1FAWgWR0CSP45xiobXdX2UKGgGaAloD0MIo1huaXUqcUCUhpRSlGgVTS8BaBZHQJJAYPz4DcN1fZQoaAZoCWgPQwjEzD6P0RhxQJSGlFKUaBVL9GgWR0CSQHlzU7SzdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1537102905f38497daa024f1eac8e42ccf42db177cb676b010701f9ef8c5f3e
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0b55586ae23ce62d19786dd9ae3977d06da8be8f98b0192c4dd59b2deeeb8c1
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (213 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 259.2527082979524, "std_reward": 21.973995009886305, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-17T11:51:50.674997"}
|