Upload llama_finetuning.py
Browse files- llama_finetuning.py +419 -0
llama_finetuning.py
ADDED
@@ -0,0 +1,419 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import torch
|
4 |
+
from transformers import (
|
5 |
+
AutoTokenizer,
|
6 |
+
AutoModelForCausalLM,
|
7 |
+
TrainingArguments,
|
8 |
+
Trainer,
|
9 |
+
BitsAndBytesConfig,
|
10 |
+
DataCollatorForLanguageModeling
|
11 |
+
)
|
12 |
+
from peft import LoraConfig, get_peft_model, TaskType, prepare_model_for_kbit_training
|
13 |
+
from datasets import Dataset
|
14 |
+
import warnings
|
15 |
+
import glob
|
16 |
+
|
17 |
+
# Suppress warnings
|
18 |
+
warnings.filterwarnings("ignore", category=FutureWarning)
|
19 |
+
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
20 |
+
|
21 |
+
def load_jsonl_data(data_dir):
|
22 |
+
"""Load conversation data from all JSONL files in the specified directory"""
|
23 |
+
conversations = []
|
24 |
+
|
25 |
+
# Find all JSONL files in the directory
|
26 |
+
jsonl_files = glob.glob(os.path.join(data_dir, "*.jsonl"))
|
27 |
+
|
28 |
+
if not jsonl_files:
|
29 |
+
print(f"β οΈ No JSONL files found in {data_dir}")
|
30 |
+
return []
|
31 |
+
|
32 |
+
print(f"Found {len(jsonl_files)} JSONL files:")
|
33 |
+
for file in jsonl_files:
|
34 |
+
print(f" β’ {os.path.basename(file)}")
|
35 |
+
|
36 |
+
# Load data from each file
|
37 |
+
for file_path in jsonl_files:
|
38 |
+
try:
|
39 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
40 |
+
for line_num, line in enumerate(f, 1):
|
41 |
+
line = line.strip()
|
42 |
+
if not line:
|
43 |
+
continue
|
44 |
+
|
45 |
+
try:
|
46 |
+
data = json.loads(line)
|
47 |
+
if 'messages' in data:
|
48 |
+
conversations.append(data['messages'])
|
49 |
+
else:
|
50 |
+
print(f"β οΈ Skipping line {line_num} in {file_path}: no 'messages' field")
|
51 |
+
except json.JSONDecodeError as e:
|
52 |
+
print(f"β οΈ Skipping invalid JSON on line {line_num} in {file_path}: {e}")
|
53 |
+
|
54 |
+
except Exception as e:
|
55 |
+
print(f"β Error reading file {file_path}: {e}")
|
56 |
+
|
57 |
+
print(f"Loaded {len(conversations)} conversations from {data_dir}")
|
58 |
+
return conversations
|
59 |
+
|
60 |
+
def format_conversation_for_training(messages):
|
61 |
+
"""
|
62 |
+
Format a conversation with system, user, and assistant messages for Llama training
|
63 |
+
|
64 |
+
Args:
|
65 |
+
messages: List of message dictionaries with 'role' and 'content' keys
|
66 |
+
|
67 |
+
Returns:
|
68 |
+
Formatted string ready for training
|
69 |
+
"""
|
70 |
+
formatted_parts = ["<|begin_of_text|>"]
|
71 |
+
|
72 |
+
for message in messages:
|
73 |
+
role = message.get('role', '').lower()
|
74 |
+
content = message.get('content', '').strip()
|
75 |
+
|
76 |
+
if not content:
|
77 |
+
continue
|
78 |
+
|
79 |
+
if role == 'system':
|
80 |
+
formatted_parts.append(f"<|start_header_id|>system<|end_header_id|>\n\n{content}<|eot_id|>")
|
81 |
+
elif role == 'user':
|
82 |
+
formatted_parts.append(f"<|start_header_id|>user<|end_header_id|>\n\n{content}<|eot_id|>")
|
83 |
+
elif role == 'assistant':
|
84 |
+
formatted_parts.append(f"<|start_header_id|>assistant<|end_header_id|>\n\n{content}<|eot_id|>")
|
85 |
+
else:
|
86 |
+
print(f"β οΈ Unknown role '{role}', skipping message")
|
87 |
+
|
88 |
+
return "".join(formatted_parts)
|
89 |
+
|
90 |
+
def tokenize_function(examples, tokenizer, max_length=1024):
|
91 |
+
"""Tokenize the conversation examples"""
|
92 |
+
# Tokenize inputs
|
93 |
+
tokenized = tokenizer(
|
94 |
+
examples["text"],
|
95 |
+
truncation=True,
|
96 |
+
padding="max_length",
|
97 |
+
max_length=max_length,
|
98 |
+
return_tensors=None # Don't return tensors here, let the collator handle it
|
99 |
+
)
|
100 |
+
|
101 |
+
# For causal language modeling, labels are the same as input_ids
|
102 |
+
tokenized["labels"] = tokenized["input_ids"].copy()
|
103 |
+
|
104 |
+
return tokenized
|
105 |
+
|
106 |
+
def prepare_dataset(conversations, tokenizer, max_length=1024):
|
107 |
+
"""Prepare dataset for training from conversation data"""
|
108 |
+
formatted_texts = []
|
109 |
+
|
110 |
+
print("π Processing conversations...")
|
111 |
+
for i, messages in enumerate(conversations):
|
112 |
+
if not messages:
|
113 |
+
print(f"β οΈ Skipping empty conversation {i+1}")
|
114 |
+
continue
|
115 |
+
|
116 |
+
# Validate conversation structure
|
117 |
+
has_system = any(msg.get('role') == 'system' for msg in messages)
|
118 |
+
has_user = any(msg.get('role') == 'user' for msg in messages)
|
119 |
+
has_assistant = any(msg.get('role') == 'assistant' for msg in messages)
|
120 |
+
|
121 |
+
if not (has_user and has_assistant):
|
122 |
+
print(f"β οΈ Skipping conversation {i+1}: missing user or assistant message")
|
123 |
+
continue
|
124 |
+
|
125 |
+
if not has_system:
|
126 |
+
print(f"β οΈ Conversation {i+1} has no system message")
|
127 |
+
|
128 |
+
# Format the conversation
|
129 |
+
formatted_text = format_conversation_for_training(messages)
|
130 |
+
|
131 |
+
if len(formatted_text.strip()) > 0:
|
132 |
+
formatted_texts.append(formatted_text)
|
133 |
+
else:
|
134 |
+
print(f"β οΈ Skipping empty formatted conversation {i+1}")
|
135 |
+
|
136 |
+
if not formatted_texts:
|
137 |
+
raise ValueError("No valid conversations found! Please check your JSONL files.")
|
138 |
+
|
139 |
+
print(f"β
Successfully processed {len(formatted_texts)} conversations")
|
140 |
+
|
141 |
+
# Show a sample formatted conversation
|
142 |
+
if formatted_texts:
|
143 |
+
print("\nπ Sample formatted conversation:")
|
144 |
+
print("-" * 80)
|
145 |
+
sample = formatted_texts[0]
|
146 |
+
print(sample[:500] + "..." if len(sample) > 500 else sample)
|
147 |
+
print("-" * 80)
|
148 |
+
|
149 |
+
# Create Hugging Face dataset
|
150 |
+
dataset = Dataset.from_dict({"text": formatted_texts})
|
151 |
+
|
152 |
+
# Tokenize the dataset
|
153 |
+
tokenized_dataset = dataset.map(
|
154 |
+
lambda examples: tokenize_function(examples, tokenizer, max_length),
|
155 |
+
batched=True,
|
156 |
+
remove_columns=dataset.column_names,
|
157 |
+
desc="Tokenizing conversations"
|
158 |
+
)
|
159 |
+
|
160 |
+
return tokenized_dataset
|
161 |
+
|
162 |
+
def setup_model_and_tokenizer(model_path):
|
163 |
+
"""Setup model with quantization and tokenizer"""
|
164 |
+
|
165 |
+
# Quantization config for 4-bit training
|
166 |
+
bnb_config = BitsAndBytesConfig(
|
167 |
+
load_in_4bit=True,
|
168 |
+
bnb_4bit_use_double_quant=True,
|
169 |
+
bnb_4bit_quant_type="nf4",
|
170 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
171 |
+
)
|
172 |
+
|
173 |
+
# Load tokenizer
|
174 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
175 |
+
model_path,
|
176 |
+
trust_remote_code=True,
|
177 |
+
padding_side="right"
|
178 |
+
)
|
179 |
+
|
180 |
+
# Add pad token if it doesn't exist
|
181 |
+
if tokenizer.pad_token is None:
|
182 |
+
tokenizer.pad_token = tokenizer.eos_token
|
183 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
184 |
+
|
185 |
+
# Load model with quantization
|
186 |
+
try:
|
187 |
+
# Try to use Flash Attention 2 if available and compatible
|
188 |
+
model = AutoModelForCausalLM.from_pretrained(
|
189 |
+
model_path,
|
190 |
+
quantization_config=bnb_config,
|
191 |
+
device_map="auto",
|
192 |
+
torch_dtype=torch.bfloat16,
|
193 |
+
trust_remote_code=True,
|
194 |
+
use_cache=False, # Disable cache for training
|
195 |
+
attn_implementation="flash_attention_2" if torch.cuda.get_device_capability()[0] >= 8 else "eager"
|
196 |
+
)
|
197 |
+
print("β
Using Flash Attention 2 for better performance!")
|
198 |
+
except Exception as e:
|
199 |
+
print(f"β οΈ Flash Attention 2 not available ({str(e)}), using standard attention")
|
200 |
+
# Fallback to standard attention
|
201 |
+
model = AutoModelForCausalLM.from_pretrained(
|
202 |
+
model_path,
|
203 |
+
quantization_config=bnb_config,
|
204 |
+
device_map="auto",
|
205 |
+
torch_dtype=torch.bfloat16,
|
206 |
+
trust_remote_code=True,
|
207 |
+
use_cache=False, # Disable cache for training
|
208 |
+
)
|
209 |
+
|
210 |
+
# Prepare model for k-bit training
|
211 |
+
model = prepare_model_for_kbit_training(model)
|
212 |
+
|
213 |
+
return model, tokenizer
|
214 |
+
|
215 |
+
def setup_lora_config():
|
216 |
+
"""Setup LoRA configuration for Llama 3.2"""
|
217 |
+
lora_config = LoraConfig(
|
218 |
+
task_type=TaskType.CAUSAL_LM,
|
219 |
+
r=16, # Rank - can be increased for potentially better results
|
220 |
+
lora_alpha=32, # LoRA scaling parameter
|
221 |
+
lora_dropout=0.1, # LoRA dropout
|
222 |
+
target_modules=[
|
223 |
+
"q_proj",
|
224 |
+
"k_proj",
|
225 |
+
"v_proj",
|
226 |
+
"o_proj",
|
227 |
+
"gate_proj",
|
228 |
+
"up_proj",
|
229 |
+
"down_proj"
|
230 |
+
],
|
231 |
+
bias="none",
|
232 |
+
inference_mode=False,
|
233 |
+
)
|
234 |
+
return lora_config
|
235 |
+
|
236 |
+
def main():
|
237 |
+
# Configuration
|
238 |
+
MODEL_PATH = "llama-3.2-3b" # Path to your base model directory
|
239 |
+
QA_DATA_PATH = "./new_qa_pairs/" # Path to your JSONL data directory
|
240 |
+
OUTPUT_DIR = "llama-3.2-3b-finetuned" # Output directory for the fine-tuned model
|
241 |
+
|
242 |
+
# Check CUDA availability
|
243 |
+
if not torch.cuda.is_available():
|
244 |
+
print("β CUDA is not available. Please check your installation.")
|
245 |
+
return
|
246 |
+
|
247 |
+
print(f"π Starting Llama 3.2 Fine-tuning")
|
248 |
+
print(f"Using GPU: {torch.cuda.get_device_name()}")
|
249 |
+
print(f"CUDA Version: {torch.version.cuda}")
|
250 |
+
print(f"PyTorch Version: {torch.__version__}")
|
251 |
+
|
252 |
+
# Check if data directory exists
|
253 |
+
if not os.path.exists(QA_DATA_PATH):
|
254 |
+
print(f"β Data directory not found: {QA_DATA_PATH}")
|
255 |
+
print("Please create the directory and add your JSONL files.")
|
256 |
+
return
|
257 |
+
|
258 |
+
# Load conversation data
|
259 |
+
print(f"\nπ Loading conversation data from {QA_DATA_PATH}...")
|
260 |
+
conversations = load_jsonl_data(QA_DATA_PATH)
|
261 |
+
|
262 |
+
if len(conversations) == 0:
|
263 |
+
print("β No valid conversations found. Please check your JSONL files.")
|
264 |
+
return
|
265 |
+
|
266 |
+
# Setup model and tokenizer
|
267 |
+
print(f"\nπ§ Loading model and tokenizer from {MODEL_PATH}...")
|
268 |
+
model, tokenizer = setup_model_and_tokenizer(MODEL_PATH)
|
269 |
+
|
270 |
+
# Prepare dataset
|
271 |
+
print(f"\nπ§ Preparing dataset...")
|
272 |
+
dataset = prepare_dataset(conversations, tokenizer, max_length=1024) # Increased for system messages
|
273 |
+
|
274 |
+
# Split dataset (90% train, 10% eval)
|
275 |
+
dataset = dataset.train_test_split(test_size=0.1, seed=42)
|
276 |
+
train_dataset = dataset['train']
|
277 |
+
eval_dataset = dataset['test']
|
278 |
+
|
279 |
+
print(f"\nπ Dataset Statistics:")
|
280 |
+
print(f" β’ Total conversations: {len(conversations)}")
|
281 |
+
print(f" β’ Training samples: {len(train_dataset)}")
|
282 |
+
print(f" β’ Evaluation samples: {len(eval_dataset)}")
|
283 |
+
|
284 |
+
# Setup LoRA
|
285 |
+
print(f"\nπ― Setting up LoRA...")
|
286 |
+
lora_config = setup_lora_config()
|
287 |
+
model = get_peft_model(model, lora_config)
|
288 |
+
model.print_trainable_parameters()
|
289 |
+
|
290 |
+
# Data collator - handles dynamic padding and label preparation
|
291 |
+
data_collator = DataCollatorForLanguageModeling(
|
292 |
+
tokenizer=tokenizer,
|
293 |
+
mlm=False, # We're doing causal language modeling, not masked LM
|
294 |
+
pad_to_multiple_of=8,
|
295 |
+
return_tensors="pt"
|
296 |
+
)
|
297 |
+
|
298 |
+
# Training arguments - updated for latest API
|
299 |
+
training_args = TrainingArguments(
|
300 |
+
output_dir=OUTPUT_DIR,
|
301 |
+
num_train_epochs=3,
|
302 |
+
per_device_train_batch_size=1, # Small batch size for 8GB GPU
|
303 |
+
per_device_eval_batch_size=1,
|
304 |
+
gradient_accumulation_steps=8, # Effective batch size = 1 * 8 = 8
|
305 |
+
warmup_steps=100,
|
306 |
+
learning_rate=2e-4,
|
307 |
+
weight_decay=0.01,
|
308 |
+
fp16=False,
|
309 |
+
bf16=True, # Use bfloat16 for better stability
|
310 |
+
logging_steps=10,
|
311 |
+
eval_steps=100,
|
312 |
+
save_steps=200,
|
313 |
+
eval_strategy="steps", # Updated parameter name
|
314 |
+
save_strategy="steps",
|
315 |
+
load_best_model_at_end=True,
|
316 |
+
metric_for_best_model="eval_loss",
|
317 |
+
greater_is_better=False,
|
318 |
+
report_to=None, # Disable wandb/tensorboard logging
|
319 |
+
dataloader_pin_memory=True,
|
320 |
+
remove_unused_columns=False,
|
321 |
+
optim="paged_adamw_8bit", # Memory-efficient optimizer
|
322 |
+
lr_scheduler_type="cosine",
|
323 |
+
max_grad_norm=1.0,
|
324 |
+
dataloader_num_workers=0, # Avoid multiprocessing issues
|
325 |
+
group_by_length=False, # Disable grouping for stability
|
326 |
+
ddp_find_unused_parameters=False, # For better performance
|
327 |
+
save_total_limit=3, # Keep only 3 checkpoints
|
328 |
+
prediction_loss_only=False,
|
329 |
+
include_inputs_for_metrics=False,
|
330 |
+
seed=42,
|
331 |
+
data_seed=42,
|
332 |
+
# New parameters in latest version
|
333 |
+
eval_do_concat_batches=False, # Better for memory
|
334 |
+
torch_empty_cache_steps=50, # Clear cache every 50 steps
|
335 |
+
gradient_checkpointing=True, # Enable gradient checkpointing for memory efficiency
|
336 |
+
gradient_checkpointing_kwargs={"use_reentrant": False}, # Use non-reentrant checkpointing (recommended)
|
337 |
+
)
|
338 |
+
|
339 |
+
# Initialize trainer
|
340 |
+
print(f"\nπ Initializing trainer...")
|
341 |
+
trainer = Trainer(
|
342 |
+
model=model,
|
343 |
+
args=training_args,
|
344 |
+
train_dataset=train_dataset,
|
345 |
+
eval_dataset=eval_dataset,
|
346 |
+
processing_class=tokenizer, # Updated parameter name from tokenizer
|
347 |
+
data_collator=data_collator,
|
348 |
+
)
|
349 |
+
|
350 |
+
# Print training info
|
351 |
+
total_steps = len(train_dataset) // training_args.gradient_accumulation_steps * training_args.num_train_epochs
|
352 |
+
print(f"\nπ Training Configuration:")
|
353 |
+
print(f" β’ Total training steps: {total_steps}")
|
354 |
+
print(f" β’ Warmup steps: {training_args.warmup_steps}")
|
355 |
+
print(f" β’ Learning rate: {training_args.learning_rate}")
|
356 |
+
print(f" β’ Batch size (effective): {training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps}")
|
357 |
+
print(f" β’ Save every: {training_args.save_steps} steps")
|
358 |
+
print(f" β’ Eval every: {training_args.eval_steps} steps")
|
359 |
+
|
360 |
+
# Start training
|
361 |
+
print(f"\nπ Starting training...")
|
362 |
+
print("=" * 60)
|
363 |
+
trainer.train()
|
364 |
+
|
365 |
+
# Save the fine-tuned model
|
366 |
+
print(f"\nπΎ Saving model...")
|
367 |
+
trainer.save_model()
|
368 |
+
|
369 |
+
# Save tokenizer separately to ensure compatibility
|
370 |
+
tokenizer.save_pretrained(OUTPUT_DIR)
|
371 |
+
|
372 |
+
print(f"\nβ
Fine-tuning completed!")
|
373 |
+
print(f"π Model saved to: {OUTPUT_DIR}")
|
374 |
+
|
375 |
+
# Test the model with a sample conversation
|
376 |
+
print(f"\nπ§ͺ Testing the model with a sample...")
|
377 |
+
|
378 |
+
# Set model to eval mode
|
379 |
+
model.eval()
|
380 |
+
|
381 |
+
# Use first conversation as test
|
382 |
+
if conversations:
|
383 |
+
test_conversation = conversations[0]
|
384 |
+
|
385 |
+
# Extract system message and user question
|
386 |
+
system_msg = next((msg['content'] for msg in test_conversation if msg['role'] == 'system'), "")
|
387 |
+
user_msg = next((msg['content'] for msg in test_conversation if msg['role'] == 'user'), "")
|
388 |
+
expected_response = next((msg['content'] for msg in test_conversation if msg['role'] == 'assistant'), "")
|
389 |
+
|
390 |
+
if system_msg and user_msg:
|
391 |
+
# Format input for testing
|
392 |
+
test_input = f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_msg}<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{user_msg}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
393 |
+
|
394 |
+
# Tokenize and generate
|
395 |
+
inputs = tokenizer(test_input, return_tensors="pt").to(model.device)
|
396 |
+
|
397 |
+
with torch.no_grad():
|
398 |
+
outputs = model.generate(
|
399 |
+
**inputs,
|
400 |
+
max_new_tokens=150,
|
401 |
+
temperature=0.7,
|
402 |
+
do_sample=True,
|
403 |
+
pad_token_id=tokenizer.eos_token_id,
|
404 |
+
eos_token_id=tokenizer.eos_token_id,
|
405 |
+
repetition_penalty=1.1,
|
406 |
+
)
|
407 |
+
|
408 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
409 |
+
generated_answer = response[len(test_input):].strip()
|
410 |
+
|
411 |
+
print(f"\nπ Test Results:")
|
412 |
+
print(f"System: {system_msg[:100]}{'...' if len(system_msg) > 100 else ''}")
|
413 |
+
print(f"Question: {user_msg}")
|
414 |
+
print(f"Generated: {generated_answer}")
|
415 |
+
print(f"Expected: {expected_response}")
|
416 |
+
print("=" * 60)
|
417 |
+
|
418 |
+
if __name__ == "__main__":
|
419 |
+
main()
|