rvo commited on
Commit
01aaa98
·
verified ·
1 Parent(s): b38a80d

Upload 25 files

Browse files
README.md CHANGED
@@ -1,3 +1,202 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/MiniLM-L6-v2
4
+ tags:
5
+ - transformers
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - text-embeddings-inference
10
+ - information-retrieval
11
+ - knowledge-distillation
12
+ language:
13
+ - en
14
+ ---
15
+
16
+ <div style="display: flex; justify-content: center;">
17
+ <div style="display: flex; align-items: center; gap: 10px;">
18
+ <img src="logo.webp" alt="MongoDB Logo" style="height: 36px; width: auto; border-radius: 4px;">
19
+ <span style="font-size: 32px; font-weight: bold">MongoDB/mdbr-leaf-mt-asym</span>
20
+ </div>
21
+ </div>
22
+
23
+ # Content
24
+
25
+ 1. [Introduction](#introduction)
26
+ 2. [Technical Report](#technical-report)
27
+ 3. [Highlights](#highlights)
28
+ 4. [Benchmarks](#benchmark-comparison)
29
+ 5. [Quickstart](#quickstart)
30
+ 6. [Citation](#citation)
31
+
32
+ # Introduction
33
+
34
+ `mdbr-leaf-mt-asym` is a compact high-performance text embedding model designed for classification, clustering, semantic sentence similarity and summarization tasks.
35
+
36
+ This model is the asymmetric variant of `mdbr-leaf-mt`, which uses [`MongoDB/mdbr-leaf-mt`](https://huggingface.co/MongoDB/mdbr-leaf-mt) for queries and [`mixedbread-ai/mxbai-embed-large-v1`](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) for documents.
37
+
38
+ The model is robust to [vector quantization](#vector-quantization) and [MRL truncation](#mrl-truncation).
39
+
40
+ If you are looking to perform semantic search / information retrieval (e.g. for RAGs), please check out our [`mdbr-leaf-ir`](https://huggingface.co/MongoDB/mdbr-leaf-ir) model, which is specifically trained for these tasks.
41
+
42
+ > [!Note]
43
+ > **Note**: this model has been developed by the ML team of MongoDB Research. At the time of writing it is not used in any of MongoDB's commercial product or service offerings.
44
+
45
+ # Technical Report
46
+
47
+ A technical report detailing our proposed `LEAF` training procedure is [available here](https://arxiv.org/abs/2509.12539).
48
+
49
+ # Highlights
50
+
51
+ * **State-of-the-Art Performance**: `mdbr-leaf-mt-asym` achieves state-of-the-art results for compact embedding models, **ranking #1** on the public [MTEB v2 (Eng) leaderboard](https://huggingface.co/spaces/mteb/leaderboard) for models with ≤30M parameters.
52
+ * **Flexible Architecture Support**: `mdbr-leaf-mt-asym` uses an asymmetric retrieval architecture enabling even greater retrieval results.
53
+ * **MRL and Quantization Support**: embedding vectors generated by `mdbr-leaf-mt-asym` compress well when truncated (MRL) and can be stored using more efficient types like `int8` and `binary`. [See below](#mrl-truncation) for more information.
54
+
55
+ ## Benchmark Comparison
56
+
57
+ The table below shows the scores for `mdbr-leaf-mt` on the MTEB v2 (English) benchmark, compared to other retrieval models.
58
+
59
+ `mdbr-leaf-mt` ranks #1 on this benchmark for models with <30M parameters.
60
+
61
+ | Model | Size | MTEB v2 (Eng) |
62
+ |------------------------------------|---------|---------------|
63
+ | OpenAI text-embedding-3-large | Unknown | 66.43 |
64
+ | OpenAI text-embedding-3-small | Unknown | 64.56 |
65
+ | **mdbr-leaf-mt** | 23M | **63.97** |
66
+ | gte-small | 33M | 63.22 |
67
+ | snowflake-arctic-embed-s | 32M | 61.59 |
68
+ | e5-small-v2 | 33M | 61.32 |
69
+ | granite-embedding-small-english-r2 | 47M | 61.07 |
70
+ | all-MiniLM-L6-v2 | 22M | 59.03 |
71
+
72
+ # Quickstart
73
+
74
+ ## Sentence Transformers
75
+
76
+ ```python
77
+ from sentence_transformers import SentenceTransformer
78
+
79
+ # Load the model
80
+ model = SentenceTransformer("MongoDB/mdbr-leaf-mt-asym")
81
+
82
+ # Example queries and documents
83
+ queries = [
84
+ "What is machine learning?",
85
+ "How does neural network training work?",
86
+ ]
87
+
88
+ documents = [
89
+ "Machine learning is a subset of artificial intelligence that focuses on algorithms that can learn from data.",
90
+ "Neural networks are trained through backpropagation, adjusting weights to minimize prediction errors.",
91
+ ]
92
+
93
+ # Encode queries and documents
94
+ query_embeddings = model.encode_query(queries)
95
+ document_embeddings = model.encode_document(documents)
96
+
97
+ # Compute similarity scores
98
+ scores = model.similarity(query_embeddings, document_embeddings)
99
+
100
+ # Print results
101
+ for i, query in enumerate(queries):
102
+ print(f"Query: {query}")
103
+ for j, doc in enumerate(documents):
104
+ print(f" Similarity: {scores[i, j]:.4f} | Document {j}: {doc[:80]}...")
105
+
106
+ # Query: What is machine learning?
107
+ # Similarity: 0.8483 | Document 0: Machine learning is a subset of artificial intelligence that focuses on algorith...
108
+ # Similarity: 0.6805 | Document 1: Neural networks are trained through backpropagation, adjusting weights to minimi...
109
+
110
+ # Query: How does neural network training work?
111
+ # Similarity: 0.6050 | Document 0: Machine learning is a subset of artificial intelligence that focuses on algorith...
112
+ # Similarity: 0.7689 | Document 1: Neural networks are trained through backpropagation, adjusting weights to minimi...
113
+ ```
114
+
115
+ ## Transformers Usage
116
+
117
+ See [here](https://huggingface.co/MongoDB/mdbr-leaf-mt/blob/main/transformers_example_mt.ipynb).
118
+
119
+ ## Asymmetric Retrieval Setup
120
+
121
+ `mdbr-leaf-mt` is *aligned* to [`mxbai-embed-large-v1`](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1), the model it has been distilled from. This enables flexible architectures in which, for example, documents are encoded using the larger model, while queries can be encoded faster and more efficiently with the compact `leaf` model. This generally outperforms the symmetric setup in which both queries and documents are encoded with `leaf`.
122
+
123
+ To use exclusively the leaf model, use [`mdbr-leaf-mt`](https://huggingface.co/MongoDB/mdbr-leaf-mt).
124
+
125
+ ## MRL Truncation
126
+
127
+ Embeddings have been trained via [MRL](https://arxiv.org/abs/2205.13147) and can be truncated for more efficient storage:
128
+ ```python
129
+ query_embeds = model.encode_query(queries, truncate_dim=256)
130
+ doc_embeds = model.encode_document(documents, truncate_dim=256)
131
+
132
+ similarities = model.similarity(query_embeds, doc_embeds)
133
+
134
+ print('After MRL:')
135
+ print(f"* Embeddings dimension: {query_embeds.shape[1]}")
136
+ print(f"* Similarities:\n{similarities}")
137
+
138
+ # After MRL:
139
+ # * Embeddings dimension: 256
140
+ # * Similarities:
141
+ # tensor([[0.8584, 0.6921],
142
+ # [0.5973, 0.7893]])
143
+ ```
144
+
145
+ ## Vector Quantization
146
+ Vector quantization, for example to `int8` or `binary`, can be performed as follows:
147
+
148
+ **Note**: For vector quantization to types other than binary, we suggest performing a calibration to determine the optimal ranges, [see here](https://sbert.net/examples/sentence_transformer/applications/embedding-quantization/README.html#scalar-int8-quantization).
149
+ Good initial values are -1.0 and +1.0.
150
+ ```python
151
+ from sentence_transformers.quantization import quantize_embeddings
152
+ import torch
153
+
154
+ query_embeds = model.encode(queries, prompt_name="query")
155
+ doc_embeds = model.encode(documents)
156
+
157
+ # Quantize embeddings to int8 using -1.0 and +1.0
158
+ ranges = torch.tensor([[-1.0], [+1.0]]).expand(2, query_embeds.shape[1]).cpu().numpy()
159
+ query_embeds = quantize_embeddings(query_embeds, "int8", ranges=ranges)
160
+ doc_embeds = quantize_embeddings(doc_embeds, "int8", ranges=ranges)
161
+
162
+ # Calculate similarities; cast to int64 to avoid under/overflow
163
+ similarities = query_embeds.astype(int) @ doc_embeds.astype(int).T
164
+
165
+ print('After quantization:')
166
+ print(f"* Embeddings type: {query_embeds.dtype}")
167
+ print(f"* Similarities:\n{similarities}")
168
+
169
+ # After quantization:
170
+ # * Embeddings type: int8
171
+ # * Similarities:
172
+ # [[2202032 1422868]
173
+ # [1421197 1845580]]
174
+ ```
175
+
176
+ # Evaluation
177
+
178
+ Please [see here](https://huggingface.co/MongoDB/mdbr-leaf-mt/blob/main/evaluate_models.ipynb).
179
+
180
+ # Citation
181
+
182
+ If you use this model in your work, please cite:
183
+
184
+ ```bibtex
185
+ @misc{mdbr_leaf,
186
+ title={LEAF: Knowledge Distillation of Text Embedding Models with Teacher-Aligned Representations},
187
+ author={Robin Vujanic and Thomas Rueckstiess},
188
+ year={2025},
189
+ eprint={2509.12539},
190
+ archivePrefix={arXiv},
191
+ primaryClass={cs.IR},
192
+ url={https://arxiv.org/abs/2509.12539},
193
+ }
194
+ ```
195
+
196
+ # License
197
+
198
+ This model is released under Apache 2.0 License.
199
+
200
+ # Contact
201
+
202
+ For questions or issues, please open an issue or pull request. You can also contact the MongoDB ML research team at [email protected].
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "SentenceTransformer",
3
+ "__version__": {
4
+ "sentence_transformers": "5.1.0",
5
+ "transformers": "4.56.1",
6
+ "pytorch": "2.8.0+cu126"
7
+ },
8
+ "prompts": {
9
+ "query": "Represent this sentence for searching relevant passages: ",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
document_0_Transformer/config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "dtype": "float32",
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 24,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "transformers_version": "4.56.1",
22
+ "type_vocab_size": 2,
23
+ "use_cache": false,
24
+ "vocab_size": 30522
25
+ }
document_0_Transformer/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e86b2a89f7f8933cf7bd90586cdf69d0012140e412818234b234f807e51ee574
3
+ size 1340612432
document_0_Transformer/sentence_bert_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false,
4
+ "model_args": {
5
+ "add_pooling_layer": false
6
+ }
7
+ }
document_0_Transformer/special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
document_0_Transformer/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
document_0_Transformer/tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
document_0_Transformer/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
document_1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
logo.png ADDED
logo.webp ADDED
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Router"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Normalize",
12
+ "type": "sentence_transformers.models.Normalize"
13
+ }
14
+ ]
query_0_Transformer/config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "dtype": "float32",
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "transformers_version": "4.56.1",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
query_0_Transformer/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08a4fce05c16baee8b6ca143d1ae11535ababb05412f506e7a89a8b56916a6a5
3
+ size 90272656
query_0_Transformer/sentence_bert_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false,
4
+ "model_args": {
5
+ "add_pooling_layer": false
6
+ }
7
+ }
query_0_Transformer/special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
query_0_Transformer/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
query_0_Transformer/tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
query_0_Transformer/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
query_1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
query_2_Dense/config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "in_features": 384,
3
+ "out_features": 1024,
4
+ "bias": false,
5
+ "activation_function": "torch.nn.modules.linear.Identity"
6
+ }
query_2_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfe95933b75110ca0c1650dc0a78f06d0a05a028892ac74ffc5aa3644283f16f
3
+ size 1572952
router_config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "types": {
3
+ "query_0_Transformer": "sentence_transformers.models.Transformer.Transformer",
4
+ "query_1_Pooling": "sentence_transformers.models.Pooling.Pooling",
5
+ "query_2_Dense": "sentence_transformers.models.Dense.Dense",
6
+ "document_0_Transformer": "sentence_transformers.models.Transformer.Transformer",
7
+ "document_1_Pooling": "sentence_transformers.models.Pooling.Pooling"
8
+ },
9
+ "structure": {
10
+ "query": [
11
+ "query_0_Transformer",
12
+ "query_1_Pooling",
13
+ "query_2_Dense"
14
+ ],
15
+ "document": [
16
+ "document_0_Transformer",
17
+ "document_1_Pooling"
18
+ ]
19
+ },
20
+ "parameters": {
21
+ "default_route": "document",
22
+ "allow_empty_key": true
23
+ }
24
+ }