File size: 7,658 Bytes
c342f94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---
license: apache-2.0  
base_model: microsoft/MiniLM-L6-v2  
tags:  
- transformers  
- sentence-transformers  
- sentence-similarity  
- feature-extraction  
- text-embeddings-inference  
- information-retrieval  
- knowledge-distillation  
language:
- en
---
<div style="display: flex; justify-content: center;">      
    <div style="display: flex; align-items: center; gap: 10px;">      
        <img src="logo.webp" alt="MongoDB Logo" style="height: 36px; width: auto; border-radius: 4px;">      
        <span style="font-size: 32px; font-weight: bold">MongoDB/mdbr-leaf-mt</span>      
    </div>      
</div>  

# Introduction

`mdbr-leaf-mt` is a compact high-performance text embedding model designed for classification, clustering, semantic sentence similarity and summarization tasks. 

To enable even greater efficiency, `mdbr-leaf-mt` supports [flexible asymmetric architectures](#asymmetric-retrieval-setup) and is robust to [vector quantization](#vector-quantization) and [MRL truncation](#mrl).

If you are looking to perform semantic search / information retrieval (e.g. for RAGs), please check out our [`mdbr-leaf-ir`](https://huggingface.co/MongoDB/mdbr-leaf-ir) model, which is specifically trained for these tasks.

> [!Note]  
> **Note**: this model has been developed by the ML team of MongoDB Research. At the time of writing it is not used in any of MongoDB's commercial product or service offerings.

# Technical Report

A technical report detailing our proposed `LEAF` training procedure is [available here (TBD)](http://FILL_HERE_ARXIV_LINK).

# Highlights  

* **State-of-the-Art Performance**: `mdbr-leaf-mt` achieves new state-of-the-art results for compact embedding models, ranking <span style="color:red">#TBD</span> on the [public MTEB v2 (Eng) benchmark leaderboard](https://huggingface.co/spaces/mteb/leaderboard) for models <30M parameters with an average score of <span style="color:red">[TBD HERE]</span>.
* **Flexible Architecture Support**: `mdbr-leaf-mt` supports asymmetric retrieval architectures enabling even greater retrieval results. [See below](#asymmetric-retrieval-setup) for more information.
* **MRL and Quantization Support**: embedding vectors generated by `mdbr-leaf-mt` compress well when truncated (MRL) and/or can be stored using more efficient types like `int8` and `binary`.  [See below](#mrl) for more information.

# Quickstart  
  
## Sentence Transformers  
  
```python  
from sentence_transformers import SentenceTransformer  
  
# Load the model  
model = SentenceTransformer("MongoDB/mdbr-leaf-mt")  
  
# Example queries and documents  
queries = [
    "What is machine learning?",  
    "How does neural network training work?"  
]  
  
documents = [  
    "Machine learning is a subset of artificial intelligence that focuses on algorithms that can learn from data.",  
    "Neural networks are trained through backpropagation, adjusting weights to minimize prediction errors."  
]  
  
# Encode queries and documents  
query_embeddings = model.encode(queries, prompt_name="query")  
document_embeddings = model.encode(documents)  
  
# Compute similarity scores  
scores = model.similarity(query_embeddings, document_embeddings)  

# Print results
for i, query in enumerate(queries):
    print(f"Query: {query}")
    for j, doc in enumerate(documents):
        print(f" Similarity: {scores[i, j]:.4f} | Document {j}: {doc[:80]}...")

# Query: What is machine learning?
#  Similarity: 0.9063 | Document 0: Machine learning is a subset of ...
#  Similarity: 0.7287 | Document 1: Neural networks are trained ...
# 
# Query: How does neural network training work?
#  Similarity: 0.6725 | Document 0: Machine learning is a subset of ...
#  Similarity: 0.8287 | Document 1: Neural networks are trained ...
```
  
## Transformers Usage  

See [here](https://huggingface.co/MongoDB/mdbr-leaf-mt/blob/main/transformers_example_mt.ipynb).
  
## Asymmetric Retrieval Setup  
  
`mdbr-leaf-mt` is *aligned* to [`mxbai-embed-large-v1`](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1), the model it has been distilled from, making the asymmetric system below possible: 
  
```python  
# Use mdbr-leaf-mt for query encoding (real-time, low latency)  
query_model = SentenceTransformer("MongoDB/mdbr-leaf-mt")  
query_embeddings = query_model.encode(queries, prompt_name="query")  

# Use a larger model for document encoding (one-time, at index time)  
doc_model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")  
document_embeddings = doc_model.encode(documents)  
  
# Compute similarities  
scores = query_model.similarity(query_embeddings, document_embeddings)  
```
Retrieval results from asymmetric mode are usually superior to the [standard mode above](#sentence-transformers).

## MRL Truncation

Embeddings have been trained via [MRL](https://arxiv.org/abs/2205.13147) and can be truncated for more efficient storage:
```python
from torch.nn import functional as F

query_embeds = model.encode(queries, prompt_name="query", convert_to_tensor=True)
doc_embeds = model.encode(documents, convert_to_tensor=True)

# Truncate and normalize according to MRL
query_embeds = F.normalize(query_embeds[:, :256], dim=-1)
doc_embeds = F.normalize(doc_embeds[:, :256], dim=-1)

similarities = model.similarity(query_embeds, doc_embeds)

print('After MRL:')
print(f"* Embeddings dimension: {query_embeds.shape[1]}")
print(f"* Similarities:\n\t{similarities}")

# After MRL:
# * Embeddings dimension: 256
# * Similarities:
# 	  tensor([[0.9164, 0.7219],
#             [0.6682, 0.8393]], device='cuda:0')
```

## Vector Quantization
Vector quantization, for example to `int8` or `binary`, can be performed as follows:

**Note**: For vector quantization to types other than binary, we suggest performing a calibration to determine the optimal ranges, [see here](https://sbert.net/examples/sentence_transformer/applications/embedding-quantization/README.html#scalar-int8-quantization). 
Good initial values are -1.0 and +1.0.
```python
from sentence_transformers.quantization import quantize_embeddings
import torch

query_embeds = model.encode(queries, prompt_name="query")
doc_embeds = model.encode(documents)

# Quantize embeddings to int8 using -1.0 and +1.0
ranges = torch.tensor([[-1.0], [+1.0]]).expand(2, query_embeds.shape[1]).cpu().numpy()
query_embeds = quantize_embeddings(query_embeds, "int8", ranges=ranges)
doc_embeds = quantize_embeddings(doc_embeds, "int8", ranges=ranges)

# Calculate similarities; cast to int64 to avoid under/overflow
similarities = query_embeds.astype(int) @ doc_embeds.astype(int).T

print('After quantization:')
print(f"* Embeddings type: {query_embeds.dtype}")
print(f"* Similarities:\n{similarities}")

# After quantization:
# * Embeddings type: int8
# * Similarities:
#   [[2202032 1422868]
#    [1421197 1845580]]
```

# Evaluation

The checkpoint used to produce the scores presented in the paper [is here](https://huggingface.co/MongoDB/mdbr-leaf-mt/commit/ea98995e96beac21b820aa8ad9afaa6fd29b243d).

# Citation  
  
If you use this model in your work, please cite:  
  
```bibtex  
@article{mdb_leaf,  
  title         = {LEAF: Lightweight Embedding Alignment Knowledge Distillation Framework},  
  author        = {Robin Vujanic and Thomas Rueckstiess},  
  year          = {2025}
  eprint        = {TBD},
  archiveprefix = {arXiv},
  primaryclass  = {FILL HERE},
  url           = {FILL HERE}
}  
```  
  
# License  
  
This model is released under Apache 2.0 License.  
  
# Contact  
  
For questions or issues, please open an issue or pull request. You can also contact the MongoDB ML Research team at [email protected].