Update README.md
Browse files
README.md
CHANGED
|
@@ -1,305 +1,306 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
base_model: microsoft/MiniLM-L6-v2
|
| 4 |
-
tags:
|
| 5 |
-
- transformers
|
| 6 |
-
- sentence-transformers
|
| 7 |
-
- sentence-similarity
|
| 8 |
-
- feature-extraction
|
| 9 |
-
- text-embeddings-inference
|
| 10 |
-
- information-retrieval
|
| 11 |
-
- knowledge-distillation
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
<
|
| 19 |
-
|
| 20 |
-
</div>
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
>
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
* **
|
| 50 |
-
* **
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
| OpenAI text-embedding-3-
|
| 62 |
-
|
|
| 63 |
-
|
|
| 64 |
-
|
|
| 65 |
-
|
|
| 66 |
-
|
|
| 67 |
-
|
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
queries
|
| 82 |
-
|
| 83 |
-
"
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
"
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
Similarity: 0.
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
Similarity: 0.
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
const
|
| 135 |
-
const
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
"
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
"
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
...
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
const
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
normalized_sentence_embedding.slice([queries.length
|
| 161 |
-
)
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
Similarity: 0.
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
Similarity: 0.
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
>
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
print(
|
| 225 |
-
print(f"*
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
*
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
Vector
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
import
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
similarities
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
print(
|
| 263 |
-
print(f"*
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
*
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
}
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
|
|
|
| 305 |
For questions or issues, please open an issue or pull request. You can also contact the MongoDB ML Research team at [email protected].
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
base_model: microsoft/MiniLM-L6-v2
|
| 4 |
+
tags:
|
| 5 |
+
- transformers
|
| 6 |
+
- sentence-transformers
|
| 7 |
+
- sentence-similarity
|
| 8 |
+
- feature-extraction
|
| 9 |
+
- text-embeddings-inference
|
| 10 |
+
- information-retrieval
|
| 11 |
+
- knowledge-distillation
|
| 12 |
+
- transformers.js
|
| 13 |
+
language:
|
| 14 |
+
- en
|
| 15 |
+
---
|
| 16 |
+
<div style="display: flex; justify-content: center;">
|
| 17 |
+
<div style="display: flex; align-items: center; gap: 10px;">
|
| 18 |
+
<img src="logo.webp" alt="MongoDB Logo" style="height: 36px; width: auto; border-radius: 4px;">
|
| 19 |
+
<span style="font-size: 32px; font-weight: bold">MongoDB/mdbr-leaf-mt</span>
|
| 20 |
+
</div>
|
| 21 |
+
</div>
|
| 22 |
+
|
| 23 |
+
# Content
|
| 24 |
+
|
| 25 |
+
1. [Introduction](#introduction)
|
| 26 |
+
2. [Technical Report](#technical-report)
|
| 27 |
+
3. [Highlights](#highlights)
|
| 28 |
+
4. [Benchmarks](#benchmark-comparison)
|
| 29 |
+
5. [Quickstart](#quickstart)
|
| 30 |
+
6. [Citation](#citation)
|
| 31 |
+
|
| 32 |
+
# Introduction
|
| 33 |
+
|
| 34 |
+
`mdbr-leaf-mt` is a compact high-performance text embedding model designed for classification, clustering, semantic sentence similarity and summarization tasks.
|
| 35 |
+
|
| 36 |
+
To enable even greater efficiency, `mdbr-leaf-mt` supports [flexible asymmetric architectures](#asymmetric-retrieval-setup) and is robust to [vector quantization](#vector-quantization) and [MRL truncation](#mrl-truncation).
|
| 37 |
+
|
| 38 |
+
If you are looking to perform semantic search / information retrieval (e.g. for RAGs), please check out our [`mdbr-leaf-ir`](https://huggingface.co/MongoDB/mdbr-leaf-ir) model, which is specifically trained for these tasks.
|
| 39 |
+
|
| 40 |
+
> [!Note]
|
| 41 |
+
> **Note**: this model has been developed by the ML team of MongoDB Research. At the time of writing it is not used in any of MongoDB's commercial product or service offerings.
|
| 42 |
+
|
| 43 |
+
# Technical Report
|
| 44 |
+
|
| 45 |
+
A technical report detailing our proposed `LEAF` training procedure is [available here](https://arxiv.org/abs/2509.12539).
|
| 46 |
+
|
| 47 |
+
# Highlights
|
| 48 |
+
|
| 49 |
+
* **State-of-the-Art Performance**: `mdbr-leaf-mt` achieves new state-of-the-art results for compact embedding models, **ranking #1** on the [public MTEB v2 (Eng) benchmark leaderboard](https://huggingface.co/spaces/mteb/leaderboard) for models with ≤30M parameters.
|
| 50 |
+
* **Flexible Architecture Support**: `mdbr-leaf-mt` supports asymmetric retrieval architectures enabling even greater retrieval results. [See below](#asymmetric-retrieval-setup) for more information.
|
| 51 |
+
* **MRL and Quantization Support**: embedding vectors generated by `mdbr-leaf-mt` compress well when truncated (MRL) and can be stored using more efficient types like `int8` and `binary`. [See below](#mrl-truncation) for more information.
|
| 52 |
+
|
| 53 |
+
## Benchmark Comparison
|
| 54 |
+
|
| 55 |
+
The table below shows the scores for `mdbr-leaf-mt` on the MTEB v2 (English) benchmark, compared to other retrieval models.
|
| 56 |
+
|
| 57 |
+
`mdbr-leaf-mt` ranks #1 on this benchmark for models with <30M parameters.
|
| 58 |
+
|
| 59 |
+
| Model | Size | MTEB v2 (Eng) |
|
| 60 |
+
|------------------------------------|---------|---------------|
|
| 61 |
+
| OpenAI text-embedding-3-large | Unknown | 66.43 |
|
| 62 |
+
| OpenAI text-embedding-3-small | Unknown | 64.56 |
|
| 63 |
+
| **mdbr-leaf-mt** | 23M | **63.97** |
|
| 64 |
+
| gte-small | 33M | 63.22 |
|
| 65 |
+
| snowflake-arctic-embed-s | 32M | 61.59 |
|
| 66 |
+
| e5-small-v2 | 33M | 61.32 |
|
| 67 |
+
| granite-embedding-small-english-r2 | 47M | 61.07 |
|
| 68 |
+
| all-MiniLM-L6-v2 | 22M | 59.03 |
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# Quickstart
|
| 72 |
+
|
| 73 |
+
## Sentence Transformers
|
| 74 |
+
|
| 75 |
+
```python
|
| 76 |
+
from sentence_transformers import SentenceTransformer
|
| 77 |
+
|
| 78 |
+
# Load the model
|
| 79 |
+
model = SentenceTransformer("MongoDB/mdbr-leaf-mt")
|
| 80 |
+
|
| 81 |
+
# Example queries and documents
|
| 82 |
+
queries = [
|
| 83 |
+
"What is machine learning?",
|
| 84 |
+
"How does neural network training work?"
|
| 85 |
+
]
|
| 86 |
+
|
| 87 |
+
documents = [
|
| 88 |
+
"Machine learning is a subset of artificial intelligence that focuses on algorithms that can learn from data.",
|
| 89 |
+
"Neural networks are trained through backpropagation, adjusting weights to minimize prediction errors."
|
| 90 |
+
]
|
| 91 |
+
|
| 92 |
+
# Encode queries and documents
|
| 93 |
+
query_embeddings = model.encode(queries, prompt_name="query")
|
| 94 |
+
document_embeddings = model.encode(documents)
|
| 95 |
+
|
| 96 |
+
# Compute similarity scores
|
| 97 |
+
scores = model.similarity(query_embeddings, document_embeddings)
|
| 98 |
+
|
| 99 |
+
# Print results
|
| 100 |
+
for i, query in enumerate(queries):
|
| 101 |
+
print(f"Query: {query}")
|
| 102 |
+
for j, doc in enumerate(documents):
|
| 103 |
+
print(f" Similarity: {scores[i, j]:.4f} | Document {j}: {doc[:80]}...")
|
| 104 |
+
```
|
| 105 |
+
|
| 106 |
+
<details>
|
| 107 |
+
|
| 108 |
+
<summary>See example output</summary>
|
| 109 |
+
|
| 110 |
+
```
|
| 111 |
+
Query: What is machine learning?
|
| 112 |
+
Similarity: 0.9063 | Document 0: Machine learning is a subset of ...
|
| 113 |
+
Similarity: 0.7287 | Document 1: Neural networks are trained ...
|
| 114 |
+
|
| 115 |
+
Query: How does neural network training work?
|
| 116 |
+
Similarity: 0.6725 | Document 0: Machine learning is a subset of ...
|
| 117 |
+
Similarity: 0.8287 | Document 1: Neural networks are trained ...
|
| 118 |
+
```
|
| 119 |
+
</details>
|
| 120 |
+
|
| 121 |
+
## Transformers.js
|
| 122 |
+
|
| 123 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
|
| 124 |
+
```bash
|
| 125 |
+
npm i @huggingface/transformers
|
| 126 |
+
```
|
| 127 |
+
|
| 128 |
+
You can then use the model to compute embeddings like this:
|
| 129 |
+
|
| 130 |
+
```js
|
| 131 |
+
import { AutoModel, AutoTokenizer, matmul } from "@huggingface/transformers";
|
| 132 |
+
|
| 133 |
+
// Download from the 🤗 Hub
|
| 134 |
+
const model_id = "MongoDB/mdbr-leaf-mt";
|
| 135 |
+
const tokenizer = await AutoTokenizer.from_pretrained(model_id);
|
| 136 |
+
const model = await AutoModel.from_pretrained(model_id, {
|
| 137 |
+
dtype: "fp32", // Options: "fp32" | "fp16" | "q8" | "q4" | "q4f16"
|
| 138 |
+
});
|
| 139 |
+
|
| 140 |
+
// Prepare queries and documents
|
| 141 |
+
const queries = [
|
| 142 |
+
"What is machine learning?",
|
| 143 |
+
"How does neural network training work?",
|
| 144 |
+
];
|
| 145 |
+
const documents = [
|
| 146 |
+
"Machine learning is a subset of artificial intelligence that focuses on algorithms that can learn from data.",
|
| 147 |
+
"Neural networks are trained through backpropagation, adjusting weights to minimize prediction errors.",
|
| 148 |
+
];
|
| 149 |
+
const inputs = await tokenizer([
|
| 150 |
+
...queries.map((x) => "Represent this sentence for searching relevant passages: " + x),
|
| 151 |
+
...documents,
|
| 152 |
+
], { padding: true });
|
| 153 |
+
|
| 154 |
+
// Generate embeddings
|
| 155 |
+
const { sentence_embedding } = await model(inputs);
|
| 156 |
+
const normalized_sentence_embedding = sentence_embedding.normalize();
|
| 157 |
+
|
| 158 |
+
// Compute similarities
|
| 159 |
+
const scores = await matmul(
|
| 160 |
+
normalized_sentence_embedding.slice([0, queries.length]),
|
| 161 |
+
normalized_sentence_embedding.slice([queries.length, null]).transpose(1, 0),
|
| 162 |
+
);
|
| 163 |
+
const scores_list = scores.tolist();
|
| 164 |
+
|
| 165 |
+
for (let i = 0; i < queries.length; ++i) {
|
| 166 |
+
console.log(`Query: ${queries[i]}`);
|
| 167 |
+
for (let j = 0; j < documents.length; ++j) {
|
| 168 |
+
console.log(` Similarity: ${scores_list[i][j].toFixed(4)} | Document ${j}: ${documents[j]}`);
|
| 169 |
+
}
|
| 170 |
+
console.log();
|
| 171 |
+
}
|
| 172 |
+
```
|
| 173 |
+
|
| 174 |
+
<details>
|
| 175 |
+
|
| 176 |
+
<summary>See example output</summary>
|
| 177 |
+
|
| 178 |
+
```
|
| 179 |
+
Query: What is machine learning?
|
| 180 |
+
Similarity: 0.9063 | Document 0: Machine learning is a subset of artificial intelligence that focuses on algorithms that can learn from data.
|
| 181 |
+
Similarity: 0.7287 | Document 1: Neural networks are trained through backpropagation, adjusting weights to minimize prediction errors.
|
| 182 |
+
|
| 183 |
+
Query: How does neural network training work?
|
| 184 |
+
Similarity: 0.6725 | Document 0: Machine learning is a subset of artificial intelligence that focuses on algorithms that can learn from data.
|
| 185 |
+
Similarity: 0.8287 | Document 1: Neural networks are trained through backpropagation, adjusting weights to minimize prediction errors.
|
| 186 |
+
```
|
| 187 |
+
</details>
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
## Transformers Usage
|
| 191 |
+
|
| 192 |
+
See [here](https://huggingface.co/MongoDB/mdbr-leaf-mt/blob/main/transformers_example_mt.ipynb).
|
| 193 |
+
|
| 194 |
+
## Asymmetric Retrieval Setup
|
| 195 |
+
|
| 196 |
+
> [!Note]
|
| 197 |
+
> **Note**: a version of this asymmetric setup, conveniently packaged into a single model, is [available here](https://huggingface.co/MongoDB/mdbr-leaf-mt-asym).
|
| 198 |
+
|
| 199 |
+
`mdbr-leaf-mt` is *aligned* to [`mxbai-embed-large-v1`](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1), the model it has been distilled from, making the asymmetric system below possible:
|
| 200 |
+
|
| 201 |
+
```python
|
| 202 |
+
# Use mdbr-leaf-mt for query encoding (real-time, low latency)
|
| 203 |
+
query_model = SentenceTransformer("MongoDB/mdbr-leaf-mt")
|
| 204 |
+
query_embeddings = query_model.encode(queries, prompt_name="query")
|
| 205 |
+
|
| 206 |
+
# Use a larger model for document encoding (one-time, at index time)
|
| 207 |
+
doc_model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
| 208 |
+
document_embeddings = doc_model.encode(documents)
|
| 209 |
+
|
| 210 |
+
# Compute similarities
|
| 211 |
+
scores = query_model.similarity(query_embeddings, document_embeddings)
|
| 212 |
+
```
|
| 213 |
+
Retrieval results from asymmetric mode are usually superior to the [standard mode above](#sentence-transformers).
|
| 214 |
+
|
| 215 |
+
## MRL Truncation
|
| 216 |
+
|
| 217 |
+
Embeddings have been trained via [MRL](https://arxiv.org/abs/2205.13147) and can be truncated for more efficient storage:
|
| 218 |
+
```python
|
| 219 |
+
query_embeds = model.encode(queries, prompt_name="query", truncate_dim=256)
|
| 220 |
+
doc_embeds = model.encode(documents, truncate_dim=256)
|
| 221 |
+
|
| 222 |
+
similarities = model.similarity(query_embeds, doc_embeds)
|
| 223 |
+
|
| 224 |
+
print('After MRL:')
|
| 225 |
+
print(f"* Embeddings dimension: {query_embeds.shape[1]}")
|
| 226 |
+
print(f"* Similarities: \n\t{similarities}")
|
| 227 |
+
```
|
| 228 |
+
|
| 229 |
+
<details>
|
| 230 |
+
|
| 231 |
+
<summary>See example output</summary>
|
| 232 |
+
|
| 233 |
+
```
|
| 234 |
+
After MRL:
|
| 235 |
+
* Embeddings dimension: 256
|
| 236 |
+
* Similarities:
|
| 237 |
+
tensor([[0.9164, 0.7219],
|
| 238 |
+
[0.6682, 0.8393]], device='cuda:0')
|
| 239 |
+
```
|
| 240 |
+
</details>
|
| 241 |
+
|
| 242 |
+
## Vector Quantization
|
| 243 |
+
Vector quantization, for example to `int8` or `binary`, can be performed as follows:
|
| 244 |
+
|
| 245 |
+
**Note**: For vector quantization to types other than binary, we suggest performing a calibration to determine the optimal ranges, [see here](https://sbert.net/examples/sentence_transformer/applications/embedding-quantization/README.html#scalar-int8-quantization).
|
| 246 |
+
Good initial values are -1.0 and +1.0.
|
| 247 |
+
```python
|
| 248 |
+
from sentence_transformers.quantization import quantize_embeddings
|
| 249 |
+
import torch
|
| 250 |
+
|
| 251 |
+
query_embeds = model.encode(queries, prompt_name="query")
|
| 252 |
+
doc_embeds = model.encode(documents)
|
| 253 |
+
|
| 254 |
+
# Quantize embeddings to int8 using -1.0 and +1.0
|
| 255 |
+
ranges = torch.tensor([[-1.0], [+1.0]]).expand(2, query_embeds.shape[1]).cpu().numpy()
|
| 256 |
+
query_embeds = quantize_embeddings(query_embeds, "int8", ranges=ranges)
|
| 257 |
+
doc_embeds = quantize_embeddings(doc_embeds, "int8", ranges=ranges)
|
| 258 |
+
|
| 259 |
+
# Calculate similarities; cast to int64 to avoid under/overflow
|
| 260 |
+
similarities = query_embeds.astype(int) @ doc_embeds.astype(int).T
|
| 261 |
+
|
| 262 |
+
print('After quantization:')
|
| 263 |
+
print(f"* Embeddings type: {query_embeds.dtype}")
|
| 264 |
+
print(f"* Similarities: \n{similarities}")
|
| 265 |
+
```
|
| 266 |
+
|
| 267 |
+
<details>
|
| 268 |
+
|
| 269 |
+
<summary>See example output</summary>
|
| 270 |
+
|
| 271 |
+
```
|
| 272 |
+
After quantization:
|
| 273 |
+
* Embeddings type: int8
|
| 274 |
+
* Similarities:
|
| 275 |
+
[[2202032 1422868]
|
| 276 |
+
[1421197 1845580]]
|
| 277 |
+
```
|
| 278 |
+
</details>
|
| 279 |
+
|
| 280 |
+
## Evaluation
|
| 281 |
+
|
| 282 |
+
Please [see here](https://huggingface.co/MongoDB/mdbr-leaf-mt/blob/main/evaluate_models.ipynb).
|
| 283 |
+
|
| 284 |
+
# Citation
|
| 285 |
+
|
| 286 |
+
If you use this model in your work, please cite:
|
| 287 |
+
|
| 288 |
+
```bibtex
|
| 289 |
+
@misc{mdbr_leaf,
|
| 290 |
+
title={LEAF: Knowledge Distillation of Text Embedding Models with Teacher-Aligned Representations},
|
| 291 |
+
author={Robin Vujanic and Thomas Rueckstiess},
|
| 292 |
+
year={2025},
|
| 293 |
+
eprint={2509.12539},
|
| 294 |
+
archivePrefix={arXiv},
|
| 295 |
+
primaryClass={cs.IR},
|
| 296 |
+
url={https://arxiv.org/abs/2509.12539},
|
| 297 |
+
}
|
| 298 |
+
```
|
| 299 |
+
|
| 300 |
+
# License
|
| 301 |
+
|
| 302 |
+
This model is released under Apache 2.0 License.
|
| 303 |
+
|
| 304 |
+
# Contact
|
| 305 |
+
|
| 306 |
For questions or issues, please open an issue or pull request. You can also contact the MongoDB ML Research team at [email protected].
|