Upload folder using huggingface_hub
Browse files- __init__.py +0 -0
- __pycache__/__init__.cpython-312.pyc +0 -0
- __pycache__/configuration_gex.cpython-312.pyc +0 -0
- __pycache__/modeling_gex.cpython-312.pyc +0 -0
- config.json +1 -1
- modeling_gex.py +440 -0
__init__.py
ADDED
File without changes
|
__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (151 Bytes). View file
|
|
__pycache__/configuration_gex.cpython-312.pyc
ADDED
Binary file (412 Bytes). View file
|
|
__pycache__/modeling_gex.cpython-312.pyc
ADDED
Binary file (21.3 kB). View file
|
|
config.json
CHANGED
@@ -22,7 +22,7 @@
|
|
22 |
"rms_norm_eps": 1e-06,
|
23 |
"rope_scaling": null,
|
24 |
"rope_theta": 1000000.0,
|
25 |
-
"sliding_window":
|
26 |
"tie_word_embeddings": true,
|
27 |
"torch_dtype": "bfloat16",
|
28 |
"transformers_version": "4.50.1",
|
|
|
22 |
"rms_norm_eps": 1e-06,
|
23 |
"rope_scaling": null,
|
24 |
"rope_theta": 1000000.0,
|
25 |
+
"sliding_window": 4096,
|
26 |
"tie_word_embeddings": true,
|
27 |
"torch_dtype": "bfloat16",
|
28 |
"transformers_version": "4.50.1",
|
modeling_gex.py
ADDED
@@ -0,0 +1,440 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from typing import List, Optional, Tuple, Type, Union
|
4 |
+
from functools import partial
|
5 |
+
import torch.nn as nn
|
6 |
+
from torch.nn import CrossEntropyLoss
|
7 |
+
from typing import Type
|
8 |
+
from torchvision import transforms
|
9 |
+
from transformers.cache_utils import Cache, DynamicCache
|
10 |
+
from transformers.modeling_outputs import (
|
11 |
+
BaseModelOutputWithPast,
|
12 |
+
CausalLMOutputWithPast,
|
13 |
+
)
|
14 |
+
|
15 |
+
from torchvision.transforms.functional import InterpolationMode
|
16 |
+
from transformers import (
|
17 |
+
Qwen2Config,
|
18 |
+
Qwen2Model,
|
19 |
+
Qwen2ForCausalLM,
|
20 |
+
)
|
21 |
+
|
22 |
+
from .configuration_gex import GexConfig
|
23 |
+
|
24 |
+
|
25 |
+
LayerNorm = partial(nn.LayerNorm, eps=1e-6)
|
26 |
+
|
27 |
+
|
28 |
+
class GexImageEvalProcessor:
|
29 |
+
def __init__(self, image_size=1024, mean=None, std=None):
|
30 |
+
if mean is None:
|
31 |
+
mean = (0.48145466, 0.4578275, 0.40821073)
|
32 |
+
if std is None:
|
33 |
+
std = (0.26862954, 0.26130258, 0.27577711)
|
34 |
+
|
35 |
+
self.normalize = transforms.Normalize(mean, std)
|
36 |
+
|
37 |
+
self.transform = transforms.Compose(
|
38 |
+
[
|
39 |
+
transforms.Resize(
|
40 |
+
(image_size, image_size), interpolation=InterpolationMode.BICUBIC
|
41 |
+
),
|
42 |
+
transforms.ToTensor(),
|
43 |
+
self.normalize,
|
44 |
+
]
|
45 |
+
)
|
46 |
+
|
47 |
+
def __call__(self, item):
|
48 |
+
return self.transform(item)
|
49 |
+
|
50 |
+
|
51 |
+
class LayerNorm2d(nn.Module):
|
52 |
+
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
53 |
+
super().__init__()
|
54 |
+
self.weight = nn.Parameter(torch.ones(num_channels))
|
55 |
+
self.bias = nn.Parameter(torch.zeros(num_channels))
|
56 |
+
self.num_channels = num_channels
|
57 |
+
self.eps = eps
|
58 |
+
|
59 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
60 |
+
x = x.permute(0, 2, 3, 1)
|
61 |
+
return torch.nn.functional.layer_norm(
|
62 |
+
x,
|
63 |
+
normalized_shape=(self.num_channels,),
|
64 |
+
weight=self.weight,
|
65 |
+
bias=self.bias,
|
66 |
+
eps=self.eps,
|
67 |
+
).permute(0, 3, 1, 2)
|
68 |
+
|
69 |
+
|
70 |
+
class PatchEmbed(nn.Module):
|
71 |
+
"""
|
72 |
+
Image to Patch Embedding.
|
73 |
+
"""
|
74 |
+
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
kernel_size: Tuple[int, int] = (16, 16),
|
78 |
+
stride: Tuple[int, int] = (16, 16),
|
79 |
+
in_chans: int = 3,
|
80 |
+
embed_dim: int = 768,
|
81 |
+
) -> None:
|
82 |
+
"""
|
83 |
+
Args:
|
84 |
+
kernel_size (Tuple): kernel size of the projection layer.
|
85 |
+
stride (Tuple): stride of the projection layer.
|
86 |
+
padding (Tuple): padding size of the projection layer.
|
87 |
+
in_chans (int): Number of input image channels.
|
88 |
+
embed_dim (int): Patch embedding dimension.
|
89 |
+
"""
|
90 |
+
super().__init__()
|
91 |
+
|
92 |
+
self.proj = nn.Conv2d(
|
93 |
+
in_chans, embed_dim, kernel_size=kernel_size, stride=stride
|
94 |
+
)
|
95 |
+
|
96 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
97 |
+
x = self.proj(x)
|
98 |
+
# B C H W -> B H W C
|
99 |
+
x = x.permute(0, 2, 3, 1)
|
100 |
+
return x
|
101 |
+
|
102 |
+
|
103 |
+
class Attention(nn.Module):
|
104 |
+
def __init__(
|
105 |
+
self,
|
106 |
+
dim: int,
|
107 |
+
num_heads: int = 8,
|
108 |
+
input_size: Optional[Tuple[int, int]] = None,
|
109 |
+
) -> None:
|
110 |
+
super().__init__()
|
111 |
+
self.num_heads = num_heads
|
112 |
+
self.head_dim = 64
|
113 |
+
self.scale = 64**-0.5
|
114 |
+
self.seq_len = input_size[0] * input_size[1]
|
115 |
+
self.input_size = input_size
|
116 |
+
|
117 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=True)
|
118 |
+
self.proj = nn.Linear(dim, dim)
|
119 |
+
|
120 |
+
# self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, self.head_dim))
|
121 |
+
# self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, self.head_dim))
|
122 |
+
self.rel_pos_h = nn.Parameter(torch.zeros(input_size[0],input_size[0], self.head_dim))
|
123 |
+
self.rel_pos_w = nn.Parameter(torch.zeros(input_size[1],input_size[1], self.head_dim))
|
124 |
+
|
125 |
+
def init_rel_pos(self):
|
126 |
+
q_size, k_size = self.input_size
|
127 |
+
q_coords = torch.arange(q_size)[:, None]
|
128 |
+
|
129 |
+
k_coords = torch.arange(k_size)[None, :]
|
130 |
+
relative_coords = (q_coords - k_coords) + (k_size - 1)
|
131 |
+
|
132 |
+
self.rel_pos_h = nn.Parameter(self.rel_pos_h.data[relative_coords.long()])
|
133 |
+
self.rel_pos_w = nn.Parameter(self.rel_pos_w.data[relative_coords.long()])
|
134 |
+
|
135 |
+
def get_attn_bias(self, q: torch.Tensor):
|
136 |
+
q = q.view(-1, *self.input_size, 64)
|
137 |
+
|
138 |
+
rel_h = torch.einsum("bhwc,hkc->bhwk", q, self.rel_pos_h)
|
139 |
+
rel_w = torch.einsum("bhwc,wkc->bhwk", q, self.rel_pos_w)
|
140 |
+
|
141 |
+
return (rel_h.unsqueeze(-1) + rel_w.unsqueeze(-2)).reshape(
|
142 |
+
-1, self.num_heads, self.seq_len, self.seq_len
|
143 |
+
)
|
144 |
+
|
145 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
146 |
+
qkv = torch.split(
|
147 |
+
self.qkv(x).view(-1, self.seq_len, 3 * 768),
|
148 |
+
768,
|
149 |
+
dim=2,
|
150 |
+
)
|
151 |
+
|
152 |
+
q, k, v = (
|
153 |
+
i.unflatten(-1, (self.num_heads, -1)).transpose(1, 2).contiguous()
|
154 |
+
for i in qkv
|
155 |
+
)
|
156 |
+
|
157 |
+
attn_bias = self.get_attn_bias(q)
|
158 |
+
|
159 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
160 |
+
q, k, v, attn_mask=attn_bias, is_causal=False
|
161 |
+
)
|
162 |
+
attn_output = attn_output.transpose(1, 2).flatten(-2)
|
163 |
+
|
164 |
+
x = self.proj(attn_output)
|
165 |
+
|
166 |
+
return x.view(-1, *self.input_size, 768)
|
167 |
+
|
168 |
+
|
169 |
+
class MLP(nn.Module):
|
170 |
+
def __init__(
|
171 |
+
self,
|
172 |
+
):
|
173 |
+
super().__init__()
|
174 |
+
self.lin1 = nn.Linear(768, 4 * 768)
|
175 |
+
self.lin2 = nn.Linear(4 * 768, 768)
|
176 |
+
self.act = nn.GELU()
|
177 |
+
|
178 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
179 |
+
return self.lin2(self.act(self.lin1(x)))
|
180 |
+
|
181 |
+
|
182 |
+
class Block(nn.Module):
|
183 |
+
def __init__(self, idx: int, window_size: int = 14):
|
184 |
+
super().__init__()
|
185 |
+
|
186 |
+
self.idx = idx
|
187 |
+
self.window_size = window_size
|
188 |
+
|
189 |
+
self.norm1 = LayerNorm(768)
|
190 |
+
|
191 |
+
self.attn = Attention(
|
192 |
+
dim=768,
|
193 |
+
num_heads=12,
|
194 |
+
input_size=(64, 64) if window_size == 0 else (14, 14),
|
195 |
+
)
|
196 |
+
|
197 |
+
self.norm2 = LayerNorm(768)
|
198 |
+
self.mlp = MLP()
|
199 |
+
|
200 |
+
@staticmethod
|
201 |
+
def window_partition(x: torch.Tensor) -> torch.Tensor:
|
202 |
+
x = F.pad(x, (0, 0, 0, 6, 0, 6))
|
203 |
+
x = (
|
204 |
+
x.view(-1, 5, 14, 5, 14, 768)
|
205 |
+
.permute(0, 1, 3, 2, 4, 5)
|
206 |
+
.contiguous()
|
207 |
+
.view(-1, 14, 14, 768)
|
208 |
+
)
|
209 |
+
return x
|
210 |
+
|
211 |
+
@staticmethod
|
212 |
+
def window_unpartition(x: torch.Tensor) -> torch.Tensor:
|
213 |
+
x = (
|
214 |
+
x.view(-1, 5, 5, 14, 14, 768)
|
215 |
+
.permute(0, 1, 3, 2, 4, 5)
|
216 |
+
.contiguous()
|
217 |
+
.view(-1, 70, 70, 768)
|
218 |
+
)
|
219 |
+
return x[:, :64, :64, :].contiguous()
|
220 |
+
|
221 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
222 |
+
shortcut = x
|
223 |
+
x = self.norm1(x)
|
224 |
+
if self.window_size > 0:
|
225 |
+
x = self.window_partition(x)
|
226 |
+
|
227 |
+
x = self.attn(x)
|
228 |
+
|
229 |
+
if self.window_size > 0:
|
230 |
+
x = self.window_unpartition(x)
|
231 |
+
|
232 |
+
x = shortcut + x
|
233 |
+
x = x + self.mlp(self.norm2(x))
|
234 |
+
|
235 |
+
return x
|
236 |
+
|
237 |
+
|
238 |
+
class GexVit(nn.Module):
|
239 |
+
def __init__(self, global_attn_indexes=[2, 5, 8, 11], **kwargs):
|
240 |
+
super().__init__()
|
241 |
+
self.global_attn_indexes = global_attn_indexes
|
242 |
+
self.patch_embed = PatchEmbed()
|
243 |
+
|
244 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, 64, 64, 768))
|
245 |
+
|
246 |
+
self.blocks = nn.ModuleList(
|
247 |
+
[
|
248 |
+
Block(idx=i, window_size=14 if i not in global_attn_indexes else 0)
|
249 |
+
for i in range(12)
|
250 |
+
]
|
251 |
+
)
|
252 |
+
|
253 |
+
self.neck = nn.ModuleList(
|
254 |
+
[
|
255 |
+
nn.Conv2d(
|
256 |
+
768,
|
257 |
+
256,
|
258 |
+
kernel_size=1,
|
259 |
+
bias=False,
|
260 |
+
),
|
261 |
+
LayerNorm2d(256),
|
262 |
+
nn.Conv2d(
|
263 |
+
256,
|
264 |
+
256,
|
265 |
+
kernel_size=3,
|
266 |
+
padding=1,
|
267 |
+
bias=False,
|
268 |
+
),
|
269 |
+
LayerNorm2d(256),
|
270 |
+
]
|
271 |
+
)
|
272 |
+
|
273 |
+
self.net_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False)
|
274 |
+
self.net_3 = nn.Conv2d(
|
275 |
+
512, 1024, kernel_size=3, stride=2, padding=1, bias=False
|
276 |
+
)
|
277 |
+
|
278 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
279 |
+
x = self.patch_embed(x)
|
280 |
+
x = x + self.pos_embed
|
281 |
+
|
282 |
+
for blk in self.blocks:
|
283 |
+
x = blk(x)
|
284 |
+
|
285 |
+
x = x.permute(0, 3, 1, 2)
|
286 |
+
|
287 |
+
for m in self.neck:
|
288 |
+
x = m(x)
|
289 |
+
|
290 |
+
x = self.net_2(x)
|
291 |
+
x = self.net_3(x)
|
292 |
+
|
293 |
+
return x
|
294 |
+
|
295 |
+
|
296 |
+
class GexQwenModel(Qwen2Model):
|
297 |
+
config_class = GexConfig
|
298 |
+
|
299 |
+
def __init__(self, config: Qwen2Config):
|
300 |
+
super().__init__(config)
|
301 |
+
self.vit = GexVit()
|
302 |
+
self.vit.eval()
|
303 |
+
self.vit_proj = nn.Linear(1024, 1024)
|
304 |
+
self.vit_proj.eval()
|
305 |
+
|
306 |
+
for param in self.vit.parameters():
|
307 |
+
param.requires_grad = False
|
308 |
+
for param in self.vit_proj.parameters():
|
309 |
+
param.requires_grad = False
|
310 |
+
def forward(
|
311 |
+
self,
|
312 |
+
input_ids: torch.LongTensor = None,
|
313 |
+
attention_mask: Optional[torch.Tensor] = None,
|
314 |
+
position_ids: Optional[torch.LongTensor] = None,
|
315 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
316 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
317 |
+
use_cache: Optional[bool] = None,
|
318 |
+
output_attentions: Optional[bool] = None,
|
319 |
+
output_hidden_states: Optional[bool] = None,
|
320 |
+
images: Optional[torch.FloatTensor] = None,
|
321 |
+
return_dict: Optional[bool] = None,
|
322 |
+
**kwargs,
|
323 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
324 |
+
if images is not None:
|
325 |
+
assert input_ids is None, input_ids
|
326 |
+
input_ids = None
|
327 |
+
attention_mask = None
|
328 |
+
kwargs["is_causal"] = True
|
329 |
+
with torch.no_grad():
|
330 |
+
vit_feature = self.vit_proj(
|
331 |
+
self.vit(images).flatten(2).permute(0, 2, 1)
|
332 |
+
)
|
333 |
+
inputs_embeds = vit_feature
|
334 |
+
|
335 |
+
# print(input_ids, images)
|
336 |
+
if inputs_embeds is None and input_ids is not None:
|
337 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
338 |
+
|
339 |
+
return super().forward(
|
340 |
+
input_ids=None,
|
341 |
+
attention_mask=attention_mask,
|
342 |
+
past_key_values=past_key_values,
|
343 |
+
inputs_embeds=inputs_embeds,
|
344 |
+
use_cache=use_cache,
|
345 |
+
position_ids=position_ids,
|
346 |
+
output_attentions=output_attentions,
|
347 |
+
output_hidden_states=output_hidden_states,
|
348 |
+
return_dict=return_dict,
|
349 |
+
**kwargs,
|
350 |
+
)
|
351 |
+
|
352 |
+
|
353 |
+
class GexQwenForCausalLM(Qwen2ForCausalLM):
|
354 |
+
config_class = GexConfig
|
355 |
+
# supports_gradient_checkpointing = True
|
356 |
+
|
357 |
+
def __init__(self, config):
|
358 |
+
super().__init__(config)
|
359 |
+
self.model = GexQwenModel(config)
|
360 |
+
|
361 |
+
self.vocab_size = config.vocab_size
|
362 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
363 |
+
|
364 |
+
# Initialize weights and apply final processing
|
365 |
+
self.post_init()
|
366 |
+
|
367 |
+
self.has_image = False
|
368 |
+
self.image_preprocess = GexImageEvalProcessor()
|
369 |
+
|
370 |
+
def forward(
|
371 |
+
self,
|
372 |
+
input_ids: torch.LongTensor = None,
|
373 |
+
attention_mask: Optional[torch.Tensor] = None,
|
374 |
+
position_ids: Optional[torch.LongTensor] = None,
|
375 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
376 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
377 |
+
labels: Optional[torch.LongTensor] = None,
|
378 |
+
use_cache: Optional[bool] = None,
|
379 |
+
output_attentions: Optional[bool] = None,
|
380 |
+
output_hidden_states: Optional[bool] = None,
|
381 |
+
return_dict: Optional[bool] = None,
|
382 |
+
cache_position: Optional[torch.LongTensor] = None,
|
383 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
384 |
+
images: Optional[torch.FloatTensor] = None,
|
385 |
+
**kwargs,
|
386 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
387 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
388 |
+
output_hidden_states = (
|
389 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
390 |
+
)
|
391 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
392 |
+
|
393 |
+
if self.has_image:
|
394 |
+
input_ids = None
|
395 |
+
self.has_image = False
|
396 |
+
else:
|
397 |
+
images = None
|
398 |
+
|
399 |
+
outputs = self.model(
|
400 |
+
input_ids=input_ids,
|
401 |
+
attention_mask=attention_mask,
|
402 |
+
position_ids=position_ids,
|
403 |
+
past_key_values=past_key_values,
|
404 |
+
inputs_embeds=inputs_embeds,
|
405 |
+
use_cache=use_cache,
|
406 |
+
output_attentions=output_attentions,
|
407 |
+
output_hidden_states=output_hidden_states,
|
408 |
+
return_dict=return_dict,
|
409 |
+
cache_position=cache_position,
|
410 |
+
images=images,
|
411 |
+
**kwargs,
|
412 |
+
)
|
413 |
+
|
414 |
+
hidden_states = outputs[0]
|
415 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
416 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
417 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
418 |
+
|
419 |
+
loss = None
|
420 |
+
if labels is not None:
|
421 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
422 |
+
|
423 |
+
if not return_dict:
|
424 |
+
output = (logits,) + outputs[1:]
|
425 |
+
return (loss,) + output if loss is not None else output
|
426 |
+
|
427 |
+
return CausalLMOutputWithPast(
|
428 |
+
loss=loss,
|
429 |
+
logits=logits,
|
430 |
+
past_key_values=outputs.past_key_values,
|
431 |
+
hidden_states=outputs.hidden_states,
|
432 |
+
attentions=outputs.attentions,
|
433 |
+
)
|
434 |
+
|
435 |
+
@torch.no_grad
|
436 |
+
def generate(self,*args,**kwargs):
|
437 |
+
self.has_image = True
|
438 |
+
res = super().generate(*args, **kwargs)
|
439 |
+
self.has_image = False
|
440 |
+
return res
|