|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.modeling_rope_utils import rope_config_validation |
|
from transformers.utils import logging |
|
from typing import Optional |
|
import math |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class MotifConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`MotifModel`]. It is used to instantiate a |
|
Motif model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of |
|
Motif-102B [moreh/Motif-102B](https://huggingface.co/moreh/Motif-102B). |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 151936): |
|
Vocabulary size of the Motif model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`MotifModel`] |
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
Dimension of the hidden representations. |
|
intermediate_size (`int`, *optional*, defaults to 22016): |
|
Dimension of the MLP representations. |
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
num_key_value_heads (`int`, *optional*, defaults to 32): |
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
max_position_embeddings (`int`, *optional*, defaults to 32768): |
|
The maximum sequence length that this model might ever be used with. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
The epsilon used by the rms normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether the model's input and output word embeddings should be tied. |
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
The base period of the RoPE embeddings. |
|
rope_scaling (`Dict`, *optional*): |
|
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type |
|
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value |
|
accordingly. |
|
Expected contents: |
|
`rope_type` (`str`): |
|
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', |
|
'llama3'], with 'default' being the original RoPE implementation. |
|
`factor` (`float`, *optional*): |
|
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In |
|
most scaling types, a `factor` of x will enable the model to handle sequences of length x * |
|
original maximum pre-trained length. |
|
`original_max_position_embeddings` (`int`, *optional*): |
|
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during |
|
pretraining. |
|
`attention_factor` (`float`, *optional*): |
|
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention |
|
computation. If unspecified, it defaults to value recommended by the implementation, using the |
|
`factor` field to infer the suggested value. |
|
`beta_fast` (`float`, *optional*): |
|
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear |
|
ramp function. If unspecified, it defaults to 32. |
|
`beta_slow` (`float`, *optional*): |
|
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear |
|
ramp function. If unspecified, it defaults to 1. |
|
`short_factor` (`List[float]`, *optional*): |
|
Only used with 'longrope'. The scaling factor to be applied to short contexts (< |
|
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden |
|
size divided by the number of attention heads divided by 2 |
|
`long_factor` (`List[float]`, *optional*): |
|
Only used with 'longrope'. The scaling factor to be applied to long contexts (< |
|
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden |
|
size divided by the number of attention heads divided by 2 |
|
`low_freq_factor` (`float`, *optional*): |
|
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE |
|
`high_freq_factor` (`float`, *optional*): |
|
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE |
|
use_sliding_window (`bool`, *optional*, defaults to `False`): |
|
Whether to use sliding window attention. |
|
sliding_window (`int`, *optional*, defaults to 4096): |
|
Sliding window attention (SWA) window size. If not specified, will default to `4096`. |
|
max_window_layers (`int`, *optional*, defaults to 28): |
|
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
|
|
```python |
|
>>> from transformers import MotifModel, MotifConfig |
|
|
|
>>> # Initializing a Motif style configuration |
|
>>> configuration = MotifConfig() |
|
|
|
>>> # Initializing a model from the Motif-102B style configuration |
|
>>> model = MotifModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "Motif" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=151936, |
|
hidden_size=4096, |
|
intermediate_size=22016, |
|
num_hidden_layers=32, |
|
num_attention_heads=32, |
|
num_key_value_heads=32, |
|
hidden_act="silu", |
|
max_position_embeddings=32768, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-6, |
|
use_cache=True, |
|
tie_word_embeddings=False, |
|
rope_theta=10000.0, |
|
rope_scaling=None, |
|
use_sliding_window=False, |
|
sliding_window=4096, |
|
max_window_layers=28, |
|
attention_dropout=0.0, |
|
multi_token_heads: Optional[int] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Arguments: |
|
multi_token_heads: If not None, use multi-token heads as in the paper https://arxiv.org/pdf/2404.19737 |
|
""" |
|
|
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.use_sliding_window = use_sliding_window |
|
self.sliding_window = sliding_window if use_sliding_window else None |
|
self.max_window_layers = max_window_layers |
|
|
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.rope_scaling = rope_scaling |
|
self.attention_dropout = attention_dropout |
|
|
|
|
|
|
|
|
|
|
|
self.scale_emb = getattr(kwargs, "scale_emb", 1) |
|
self.init_scale_o = getattr(kwargs, "init_scale_o", 1) |
|
|
|
|
|
self.hidden_states_shrink = 1 / math.sqrt(num_hidden_layers) |
|
self.dim_model_base = hidden_size |
|
self.dim_model_base_attn = (hidden_size // num_attention_heads) |
|
self.dim_model_base_init = hidden_size |
|
self.dim_model_base_lr = getattr(kwargs, "dim_model_base_lr", hidden_size//8) |
|
self.dim_model_base_lmh = 1 |
|
self.dim_model_base_logits = hidden_size |
|
|
|
self.muP = getattr(kwargs, "muP", False) |
|
|
|
|
|
logger.info(kwargs) |
|
self.wesar_weights = getattr(kwargs, "wesar_weights", False) |
|
logger.info(f'initial wesar reparameterization : {self.wesar_weights}') |
|
|
|
|
|
self.embed_tokens_alpha = getattr(kwargs, "embed_tokens_alpha", None) |
|
self.q_proj_alpha = getattr(kwargs, "q_proj_alpha", None) |
|
self.k_proj_alpha = getattr(kwargs, "k_proj_alpha", None) |
|
self.v_proj_alpha = getattr(kwargs, "v_proj_alpha", None) |
|
self.o_proj_alpha = getattr(kwargs, "o_proj_alpha", None) |
|
self.down_proj_alpha = getattr(kwargs, "down_proj_alpha", None) |
|
self.gate_up_proj_alpha = getattr(kwargs, "gate_up_proj_alpha", None) |
|
self.input_layernorm_alpha = getattr(kwargs, "input_layernorm_alpha", None) |
|
self.post_attention_layernorm_alpha = getattr(kwargs, "post_attention_layernorm_alpha", None) |
|
self.norm_alpha = getattr(kwargs, "norm_alpha", None) |
|
self.lm_head_alpha = getattr(kwargs, "lm_head_alpha", None) |
|
self.use_norm_alpha = getattr(kwargs, "use_norm_alpha", False) |
|
self.use_emb_alpha = getattr(kwargs, "use_emb_alpha", False) |
|
|
|
|
|
|
|
if self.rope_scaling is not None and "type" in self.rope_scaling: |
|
self.rope_scaling["rope_type"] = self.rope_scaling["type"] |
|
rope_config_validation(self) |
|
|
|
self.multi_token_heads = multi_token_heads |
|
self.multi_token_config_validation() |
|
|
|
|
|
|
|
|
|
self.topk_method = getattr(kwargs, "topk_method", None) |
|
self.scoring_func = getattr(kwargs, "scoring_func", None) |
|
self.routed_scaling_factor = getattr(kwargs, "routed_scaling_factor", None) |
|
self.norm_topk_prob = getattr(kwargs, "norm_topk_prob", None) |
|
self.seq_aux = getattr(kwargs, "seq_aux", None) |
|
self.hidden_act_moe = getattr(kwargs, "hidden_act_moe", None) |
|
|
|
|
|
self.n_group = getattr(kwargs, "n_group", None) |
|
self.n_routed_experts = getattr(kwargs, "n_routed_experts", None) |
|
self.moe_intermediate_size = getattr(kwargs, "moe_intermediate_size", None) |
|
self.topk_group = getattr(kwargs, "topk_group", None) |
|
|
|
|
|
self.use_fused_mlp = getattr(kwargs, "use_fused_mlp", None) |
|
self.use_moreh_moe = getattr(kwargs, "use_moreh_moe", False) |
|
self.continual_training = getattr(kwargs, "continual_training", False) |
|
|
|
|
|
self.first_expansion = getattr(kwargs, "first_expansion", False) |
|
self.moe_layer = getattr(kwargs, "moe_layer", False) |
|
|
|
|
|
|
|
super().__init__( |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
logger.info(f' kwargs : {kwargs}') |
|
logger.info(f'after wesar reparameterization : {self.wesar_weights}') |
|
|
|
def multi_token_config_validation(self): |
|
if self.multi_token_heads is not None: |
|
assert isinstance(self.multi_token_heads, int) and self.multi_token_heads >= 1 |