Update modeling_motif.py
Browse files- modeling_motif.py +8 -16
modeling_motif.py
CHANGED
@@ -1,36 +1,28 @@
|
|
1 |
import math
|
|
|
2 |
from typing import List, Optional, Tuple, Union
|
3 |
|
4 |
import torch
|
|
|
5 |
import torch.utils.checkpoint
|
6 |
from torch import nn
|
7 |
from torch.nn import CrossEntropyLoss
|
|
|
|
|
8 |
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
|
9 |
from transformers.generation import GenerationMixin
|
10 |
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
11 |
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
12 |
-
from transformers.modeling_outputs import
|
13 |
-
CausalLMOutputWithPast,
|
14 |
-
ModelOutput,
|
15 |
-
)
|
16 |
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
17 |
from transformers.modeling_utils import PreTrainedModel
|
18 |
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
19 |
-
from transformers.utils import (
|
20 |
-
|
21 |
-
|
22 |
-
is_flash_attn_greater_or_equal_2_10,
|
23 |
-
is_flash_attn_2_available,
|
24 |
-
logging,
|
25 |
-
replace_return_docstrings,
|
26 |
-
)
|
27 |
from .configuration_motif import MotifConfig
|
28 |
-
from dataclasses import dataclass
|
29 |
|
30 |
-
import torch.nn.functional as F
|
31 |
|
32 |
-
from transformers.activations import ACT2CLS as _ACT2CLS
|
33 |
-
from transformers.activations import ClassInstantier
|
34 |
class PolyNorm(torch.nn.Module):
|
35 |
"""
|
36 |
A trainable activation function introduced in https://arxiv.org/html/2411.03884v1.
|
|
|
1 |
import math
|
2 |
+
from dataclasses import dataclass
|
3 |
from typing import List, Optional, Tuple, Union
|
4 |
|
5 |
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
import torch.utils.checkpoint
|
8 |
from torch import nn
|
9 |
from torch.nn import CrossEntropyLoss
|
10 |
+
from transformers.activations import ACT2CLS as _ACT2CLS
|
11 |
+
from transformers.activations import ClassInstantier
|
12 |
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
|
13 |
from transformers.generation import GenerationMixin
|
14 |
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
15 |
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
16 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast, ModelOutput
|
|
|
|
|
|
|
17 |
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
18 |
from transformers.modeling_utils import PreTrainedModel
|
19 |
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
20 |
+
from transformers.utils import (add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available,
|
21 |
+
is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings)
|
22 |
+
|
|
|
|
|
|
|
|
|
|
|
23 |
from .configuration_motif import MotifConfig
|
|
|
24 |
|
|
|
25 |
|
|
|
|
|
26 |
class PolyNorm(torch.nn.Module):
|
27 |
"""
|
28 |
A trainable activation function introduced in https://arxiv.org/html/2411.03884v1.
|