eunhwanpark-motiftech commited on
Commit
a77c948
·
verified ·
1 Parent(s): 9a018e3

Update configuration_motif.py

Browse files
Files changed (1) hide show
  1. configuration_motif.py +4 -10
configuration_motif.py CHANGED
@@ -1,8 +1,9 @@
 
 
 
1
  from transformers.configuration_utils import PretrainedConfig
2
  from transformers.modeling_rope_utils import rope_config_validation
3
  from transformers.utils import logging
4
- from typing import Optional
5
- import math
6
 
7
  logger = logging.get_logger(__name__)
8
 
@@ -13,11 +14,8 @@ class MotifConfig(PretrainedConfig):
13
  Motif model according to the specified arguments, defining the model architecture. Instantiating a configuration
14
  with the defaults will yield a similar configuration to that of
15
  Motif-102B [moreh/Motif-102B](https://huggingface.co/moreh/Motif-102B).
16
-
17
  Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
18
  documentation from [`PretrainedConfig`] for more information.
19
-
20
-
21
  Args:
22
  vocab_size (`int`, *optional*, defaults to 151936):
23
  Vocabulary size of the Motif model. Defines the number of different tokens that can be represented by the
@@ -97,16 +95,12 @@ class MotifConfig(PretrainedConfig):
97
  The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
98
  attention_dropout (`float`, *optional*, defaults to 0.0):
99
  The dropout ratio for the attention probabilities.
100
-
101
  ```python
102
  >>> from transformers import MotifModel, MotifConfig
103
-
104
  >>> # Initializing a Motif style configuration
105
  >>> configuration = MotifConfig()
106
-
107
  >>> # Initializing a model from the Motif-102B style configuration
108
  >>> model = MotifModel(configuration)
109
-
110
  >>> # Accessing the model configuration
111
  >>> configuration = model.config
112
  ```"""
@@ -170,4 +164,4 @@ class MotifConfig(PretrainedConfig):
170
  tie_word_embeddings=tie_word_embeddings,
171
  **kwargs,
172
  )
173
- logger.info(f' kwargs : {kwargs}')
 
1
+ import math
2
+ from typing import Optional
3
+
4
  from transformers.configuration_utils import PretrainedConfig
5
  from transformers.modeling_rope_utils import rope_config_validation
6
  from transformers.utils import logging
 
 
7
 
8
  logger = logging.get_logger(__name__)
9
 
 
14
  Motif model according to the specified arguments, defining the model architecture. Instantiating a configuration
15
  with the defaults will yield a similar configuration to that of
16
  Motif-102B [moreh/Motif-102B](https://huggingface.co/moreh/Motif-102B).
 
17
  Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
18
  documentation from [`PretrainedConfig`] for more information.
 
 
19
  Args:
20
  vocab_size (`int`, *optional*, defaults to 151936):
21
  Vocabulary size of the Motif model. Defines the number of different tokens that can be represented by the
 
95
  The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
96
  attention_dropout (`float`, *optional*, defaults to 0.0):
97
  The dropout ratio for the attention probabilities.
 
98
  ```python
99
  >>> from transformers import MotifModel, MotifConfig
 
100
  >>> # Initializing a Motif style configuration
101
  >>> configuration = MotifConfig()
 
102
  >>> # Initializing a model from the Motif-102B style configuration
103
  >>> model = MotifModel(configuration)
 
104
  >>> # Accessing the model configuration
105
  >>> configuration = model.config
106
  ```"""
 
164
  tie_word_embeddings=tie_word_embeddings,
165
  **kwargs,
166
  )
167
+ logger.info(f' kwargs : {kwargs}')