MugheesAwan11 commited on
Commit
613db61
1 Parent(s): 23919bd

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,567 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_ndcg@100
23
+ - cosine_mrr@10
24
+ - cosine_map@100
25
+ pipeline_tag: sentence-similarity
26
+ tags:
27
+ - sentence-transformers
28
+ - sentence-similarity
29
+ - feature-extraction
30
+ - generated_from_trainer
31
+ - dataset_size:10000
32
+ - loss:MatryoshkaLoss
33
+ - loss:MultipleNegativesRankingLoss
34
+ widget:
35
+ - source_sentence: Cashless transactions such as online transactions, credit card
36
+ transactions, and mobile wallet are becoming more popular in financial transactions
37
+ nowadays. With increased number of such cashless transaction, number of fraudulent
38
+ transactions are also increasing. Fraud can be distinguished by analyzing spending
39
+ behavior of customers (users) from previous transaction data. If any deviation
40
+ is noticed in spending behavior from available patterns, it is possibly of fraudulent
41
+ transaction. To detect fraud behavior, bank and credit card companies are using
42
+ various methods of data mining such as decision tree, rule based mining, neural
43
+ network, fuzzy clustering approach, hidden markov model or hybrid approach of
44
+ these methods. Any of these methods is applied to find out normal usage pattern
45
+ of customers (users) based on their past activities. The objective of this paper
46
+ is to provide comparative study of different techniques to detect fraud.
47
+ sentences:
48
+ - how fraud detection is done
49
+ - deep cnn image analysis definition
50
+ - what are intermediate representations
51
+ - source_sentence: 'We present a novel convolutional neural network (CNN) based approach
52
+ for one-class classification. The idea is to use a zero centered Gaussian noise
53
+ in the latent space as the pseudo-negative class and train the network using the
54
+ cross-entropy loss to learn a good representation as well as the decision boundary
55
+ for the given class. A key feature of the proposed approach is that any pre-trained
56
+ CNN can be used as the base network for one-class classification. The proposed
57
+ one-class CNN is evaluated on the UMDAA-02 Face, Abnormality-1001, and FounderType-200
58
+ datasets. These datasets are related to a variety of one-class application problems
59
+ such as user authentication, abnormality detection, and novelty detection. Extensive
60
+ experiments demonstrate that the proposed method achieves significant improvements
61
+ over the recent state-of-the-art methods. The source code is available at: github.com/otkupjnoz/oc-cnn.'
62
+ sentences:
63
+ - what is one class convolutional neural networks
64
+ - what is the use for sic carbide
65
+ - what is bayesopt
66
+ - source_sentence: 'While the field of educational data mining (EDM) has generated
67
+ many innovations for improving educational software and student learning, the
68
+ mining of student data has recently come under a great deal of scrutiny. Many
69
+ stakeholder groups, including public officials, media outlets, and parents, have
70
+ voiced concern over the privacy of student data and their efforts have garnered
71
+ national attention. The momentum behind and scrutiny of student privacy has made
72
+ it increasingly difficult for EDM applications to transition from academia to
73
+ industry. Based on experience as academic researchers transitioning into industry,
74
+ we present three primary areas of concern related to student privacy in practice:
75
+ policy, corporate social responsibility, and public opinion. Our discussion will
76
+ describe the key challenges faced within these categories, strategies for overcoming
77
+ them, and ways in which the academic EDM community can support the adoption of
78
+ innovative technologies in large-scale production.'
79
+ sentences:
80
+ - what is the purpose of artificial intelligence firewalls
81
+ - genetic crossover operator
82
+ - why is privacy important for students
83
+ - source_sentence: Autonomous vehicle research has been prevalent for well over a
84
+ decade but only recently has there been a small amount of research conducted on
85
+ the human interaction that occurs in autonomous vehicles. Although functional
86
+ software and sensor technology is essential for safe operation, which has been
87
+ the main focus of autonomous vehicle research, handling all elements of human
88
+ interaction is also a very salient aspect of their success. This paper will provide
89
+ an overview of the importance of human vehicle interaction in autonomous vehicles,
90
+ while considering relevant related factors that are likely to impact adoption.
91
+ Particular attention will be given to prior research conducted on germane areas
92
+ relating to control in the automobile, in addition to the different elements that
93
+ are expected to affect the likelihood of success for these vehicles initially
94
+ developed for human operation. This paper will also include a discussion of the
95
+ limited research conducted to consider interactions with humans and the current
96
+ state of published functioning software and sensor technology that exists.
97
+ sentences:
98
+ - when are human interaction in autonomous vehicles
99
+ - what is the purpose of evaluator guidelines
100
+ - definition of collaborative filtering
101
+ - source_sentence: J. Appl. Phys. 111, 07E328 (2012) A single-solenoid pulsed-magnet
102
+ system for single-crystal scattering studies Rev. Sci. Instrum. 83, 035101 (2012)
103
+ Solution to the problem of E-cored coil above a layered half-space using the method
104
+ of truncated region eigenfunction expansion J. Appl. Phys. 111, 07E717 (2012)
105
+ Array of 12 coils to measure the position, alignment, and sensitivity of magnetic
106
+ sensors over temperature J. Appl. Phys. 111, 07E501 (2012) Skin effect suppression
107
+ for Cu/CoZrNb multilayered inductor J. Appl. Phys. 111, 07A501 (2012)
108
+ sentences:
109
+ - which inductor can be used for multilayer scattering studies?
110
+ - which patch antennas use a microstrip line
111
+ - what kind of interaction is in mobile
112
+ model-index:
113
+ - name: SentenceTransformer based on BAAI/bge-base-en-v1.5
114
+ results:
115
+ - task:
116
+ type: information-retrieval
117
+ name: Information Retrieval
118
+ dataset:
119
+ name: dim 768
120
+ type: dim_768
121
+ metrics:
122
+ - type: cosine_accuracy@1
123
+ value: 0.4995
124
+ name: Cosine Accuracy@1
125
+ - type: cosine_accuracy@3
126
+ value: 0.7685
127
+ name: Cosine Accuracy@3
128
+ - type: cosine_accuracy@5
129
+ value: 0.8205
130
+ name: Cosine Accuracy@5
131
+ - type: cosine_accuracy@10
132
+ value: 0.873
133
+ name: Cosine Accuracy@10
134
+ - type: cosine_precision@1
135
+ value: 0.4995
136
+ name: Cosine Precision@1
137
+ - type: cosine_precision@3
138
+ value: 0.2561666666666667
139
+ name: Cosine Precision@3
140
+ - type: cosine_precision@5
141
+ value: 0.16410000000000002
142
+ name: Cosine Precision@5
143
+ - type: cosine_precision@10
144
+ value: 0.08730000000000002
145
+ name: Cosine Precision@10
146
+ - type: cosine_recall@1
147
+ value: 0.4995
148
+ name: Cosine Recall@1
149
+ - type: cosine_recall@3
150
+ value: 0.7685
151
+ name: Cosine Recall@3
152
+ - type: cosine_recall@5
153
+ value: 0.8205
154
+ name: Cosine Recall@5
155
+ - type: cosine_recall@10
156
+ value: 0.873
157
+ name: Cosine Recall@10
158
+ - type: cosine_ndcg@10
159
+ value: 0.7001286552732331
160
+ name: Cosine Ndcg@10
161
+ - type: cosine_ndcg@100
162
+ value: 0.7182557103824586
163
+ name: Cosine Ndcg@100
164
+ - type: cosine_mrr@10
165
+ value: 0.6433079365079365
166
+ name: Cosine Mrr@10
167
+ - type: cosine_map@100
168
+ value: 0.6472568310800184
169
+ name: Cosine Map@100
170
+ ---
171
+
172
+ # SentenceTransformer based on BAAI/bge-base-en-v1.5
173
+
174
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
175
+
176
+ ## Model Details
177
+
178
+ ### Model Description
179
+ - **Model Type:** Sentence Transformer
180
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
181
+ - **Maximum Sequence Length:** 512 tokens
182
+ - **Output Dimensionality:** 768 tokens
183
+ - **Similarity Function:** Cosine Similarity
184
+ <!-- - **Training Dataset:** Unknown -->
185
+ - **Language:** en
186
+ - **License:** apache-2.0
187
+
188
+ ### Model Sources
189
+
190
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
191
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
192
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
193
+
194
+ ### Full Model Architecture
195
+
196
+ ```
197
+ SentenceTransformer(
198
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
199
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
200
+ (2): Normalize()
201
+ )
202
+ ```
203
+
204
+ ## Usage
205
+
206
+ ### Direct Usage (Sentence Transformers)
207
+
208
+ First install the Sentence Transformers library:
209
+
210
+ ```bash
211
+ pip install -U sentence-transformers
212
+ ```
213
+
214
+ Then you can load this model and run inference.
215
+ ```python
216
+ from sentence_transformers import SentenceTransformer
217
+
218
+ # Download from the 🤗 Hub
219
+ model = SentenceTransformer("MugheesAwan11/bge-base-scidocs-dataset-10k-2k-e1")
220
+ # Run inference
221
+ sentences = [
222
+ 'J. Appl. Phys. 111, 07E328 (2012) A single-solenoid pulsed-magnet system for single-crystal scattering studies Rev. Sci. Instrum. 83, 035101 (2012) Solution to the problem of E-cored coil above a layered half-space using the method of truncated region eigenfunction expansion J. Appl. Phys. 111, 07E717 (2012) Array of 12 coils to measure the position, alignment, and sensitivity of magnetic sensors over temperature J. Appl. Phys. 111, 07E501 (2012) Skin effect suppression for Cu/CoZrNb multilayered inductor J. Appl. Phys. 111, 07A501 (2012)',
223
+ 'which inductor can be used for multilayer scattering studies?',
224
+ 'what kind of interaction is in mobile',
225
+ ]
226
+ embeddings = model.encode(sentences)
227
+ print(embeddings.shape)
228
+ # [3, 768]
229
+
230
+ # Get the similarity scores for the embeddings
231
+ similarities = model.similarity(embeddings, embeddings)
232
+ print(similarities.shape)
233
+ # [3, 3]
234
+ ```
235
+
236
+ <!--
237
+ ### Direct Usage (Transformers)
238
+
239
+ <details><summary>Click to see the direct usage in Transformers</summary>
240
+
241
+ </details>
242
+ -->
243
+
244
+ <!--
245
+ ### Downstream Usage (Sentence Transformers)
246
+
247
+ You can finetune this model on your own dataset.
248
+
249
+ <details><summary>Click to expand</summary>
250
+
251
+ </details>
252
+ -->
253
+
254
+ <!--
255
+ ### Out-of-Scope Use
256
+
257
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
258
+ -->
259
+
260
+ ## Evaluation
261
+
262
+ ### Metrics
263
+
264
+ #### Information Retrieval
265
+ * Dataset: `dim_768`
266
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
267
+
268
+ | Metric | Value |
269
+ |:--------------------|:-----------|
270
+ | cosine_accuracy@1 | 0.4995 |
271
+ | cosine_accuracy@3 | 0.7685 |
272
+ | cosine_accuracy@5 | 0.8205 |
273
+ | cosine_accuracy@10 | 0.873 |
274
+ | cosine_precision@1 | 0.4995 |
275
+ | cosine_precision@3 | 0.2562 |
276
+ | cosine_precision@5 | 0.1641 |
277
+ | cosine_precision@10 | 0.0873 |
278
+ | cosine_recall@1 | 0.4995 |
279
+ | cosine_recall@3 | 0.7685 |
280
+ | cosine_recall@5 | 0.8205 |
281
+ | cosine_recall@10 | 0.873 |
282
+ | cosine_ndcg@10 | 0.7001 |
283
+ | cosine_ndcg@100 | 0.7183 |
284
+ | cosine_mrr@10 | 0.6433 |
285
+ | **cosine_map@100** | **0.6473** |
286
+
287
+ <!--
288
+ ## Bias, Risks and Limitations
289
+
290
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
291
+ -->
292
+
293
+ <!--
294
+ ### Recommendations
295
+
296
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
297
+ -->
298
+
299
+ ## Training Details
300
+
301
+ ### Training Dataset
302
+
303
+ #### Unnamed Dataset
304
+
305
+
306
+ * Size: 10,000 training samples
307
+ * Columns: <code>positive</code> and <code>anchor</code>
308
+ * Approximate statistics based on the first 1000 samples:
309
+ | | positive | anchor |
310
+ |:--------|:------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
311
+ | type | string | string |
312
+ | details | <ul><li>min: 2 tokens</li><li>mean: 210.86 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.51 tokens</li><li>max: 33 tokens</li></ul> |
313
+ * Samples:
314
+ | positive | anchor |
315
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------|
316
+ | <code>This article introduces a sentiment analysis approach that adopts the way humans read, interpret, and extract sentiment from text. Our motivation builds on the assumption that human interpretation should lead to the most accurate assessment of sentiment in text. We call this automated process Human Reading for Sentiment (HRS). Previous research in sentiment analysis has produced many frameworks that can fit one or more of the HRS aspects; however, none of these methods has addressed them all in one approach. HRS provides a meta-framework for developing new sentiment analysis methods or improving existing ones. The proposed framework provides a theoretical lens for zooming in and evaluating aspects of any sentiment analysis method to identify gaps for improvements towards matching the human reading process. Key steps in HRS include the automation of humans low-level and high-level cognitive text processing. This methodology paves the way towards the integration of psychology with computational linguistics and machine learning to employ models of pragmatics and discourse analysis for sentiment analysis. HRS is tested with two state-of-the-art methods; one is based on feature engineering, and the other is based on deep learning. HRS highlighted the gaps in both methods and showed improvements for both.</code> | <code>definition of sentiment analysis</code> |
317
+ | <code>Although commonly used in both commercial and experimental information retrieval systems, thesauri have not demonstrated consistent beneets for retrieval performance, and it is diicult to construct a thesaurus automatically for large text databases. In this paper, an approach, called PhraseFinder, is proposed to construct collection-dependent association thesauri automatically using large full-text document collections. The association thesaurus can be accessed through natural language queries in INQUERY, an information retrieval system based on the probabilistic inference network. Experiments are conducted in IN-QUERY to evaluate diierent types of association thesauri, and thesauri constructed for a variety of collections.</code> | <code>what is association thesaurus</code> |
318
+ | <code>The choice of transfer functions may strongly influence complexity and performance of neural networks. Although sigmoidal transfer functions are the most common there is no a priori reason why models based on such functions should always provide optimal decision borders. A large number of alternative transfer functions has been described in the literature. A taxonomy of activation and output functions is proposed, and advantages of various non-local and local neural transfer functions are discussed. Several less-known types of transfer functions and new combinations of activation/output functions are described. Universal transfer functions, parametrized to change from localized to delocalized type, are of greatest interest. Other types of neural transfer functions discussed here include functions with activations based on nonEuclidean distance measures, bicentral functions, formed from products or linear combinations of pairs of sigmoids, and extensions of such functions making rotations of localized decision borders in highly dimensional spaces practical. Nonlinear input preprocessing techniques are briefly described, offering an alternative way to change the shapes of decision borders.</code> | <code>types of neural transfer functions</code> |
319
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
320
+ ```json
321
+ {
322
+ "loss": "MultipleNegativesRankingLoss",
323
+ "matryoshka_dims": [
324
+ 768
325
+ ],
326
+ "matryoshka_weights": [
327
+ 1
328
+ ],
329
+ "n_dims_per_step": -1
330
+ }
331
+ ```
332
+
333
+ ### Training Hyperparameters
334
+ #### Non-Default Hyperparameters
335
+
336
+ - `eval_strategy`: epoch
337
+ - `per_device_train_batch_size`: 32
338
+ - `per_device_eval_batch_size`: 16
339
+ - `learning_rate`: 2e-05
340
+ - `num_train_epochs`: 1
341
+ - `lr_scheduler_type`: cosine
342
+ - `warmup_ratio`: 0.1
343
+ - `bf16`: True
344
+ - `tf32`: True
345
+ - `load_best_model_at_end`: True
346
+ - `optim`: adamw_torch_fused
347
+ - `batch_sampler`: no_duplicates
348
+
349
+ #### All Hyperparameters
350
+ <details><summary>Click to expand</summary>
351
+
352
+ - `overwrite_output_dir`: False
353
+ - `do_predict`: False
354
+ - `eval_strategy`: epoch
355
+ - `prediction_loss_only`: True
356
+ - `per_device_train_batch_size`: 32
357
+ - `per_device_eval_batch_size`: 16
358
+ - `per_gpu_train_batch_size`: None
359
+ - `per_gpu_eval_batch_size`: None
360
+ - `gradient_accumulation_steps`: 1
361
+ - `eval_accumulation_steps`: None
362
+ - `learning_rate`: 2e-05
363
+ - `weight_decay`: 0.0
364
+ - `adam_beta1`: 0.9
365
+ - `adam_beta2`: 0.999
366
+ - `adam_epsilon`: 1e-08
367
+ - `max_grad_norm`: 1.0
368
+ - `num_train_epochs`: 1
369
+ - `max_steps`: -1
370
+ - `lr_scheduler_type`: cosine
371
+ - `lr_scheduler_kwargs`: {}
372
+ - `warmup_ratio`: 0.1
373
+ - `warmup_steps`: 0
374
+ - `log_level`: passive
375
+ - `log_level_replica`: warning
376
+ - `log_on_each_node`: True
377
+ - `logging_nan_inf_filter`: True
378
+ - `save_safetensors`: True
379
+ - `save_on_each_node`: False
380
+ - `save_only_model`: False
381
+ - `restore_callback_states_from_checkpoint`: False
382
+ - `no_cuda`: False
383
+ - `use_cpu`: False
384
+ - `use_mps_device`: False
385
+ - `seed`: 42
386
+ - `data_seed`: None
387
+ - `jit_mode_eval`: False
388
+ - `use_ipex`: False
389
+ - `bf16`: True
390
+ - `fp16`: False
391
+ - `fp16_opt_level`: O1
392
+ - `half_precision_backend`: auto
393
+ - `bf16_full_eval`: False
394
+ - `fp16_full_eval`: False
395
+ - `tf32`: True
396
+ - `local_rank`: 0
397
+ - `ddp_backend`: None
398
+ - `tpu_num_cores`: None
399
+ - `tpu_metrics_debug`: False
400
+ - `debug`: []
401
+ - `dataloader_drop_last`: False
402
+ - `dataloader_num_workers`: 0
403
+ - `dataloader_prefetch_factor`: None
404
+ - `past_index`: -1
405
+ - `disable_tqdm`: False
406
+ - `remove_unused_columns`: True
407
+ - `label_names`: None
408
+ - `load_best_model_at_end`: True
409
+ - `ignore_data_skip`: False
410
+ - `fsdp`: []
411
+ - `fsdp_min_num_params`: 0
412
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
413
+ - `fsdp_transformer_layer_cls_to_wrap`: None
414
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
415
+ - `deepspeed`: None
416
+ - `label_smoothing_factor`: 0.0
417
+ - `optim`: adamw_torch_fused
418
+ - `optim_args`: None
419
+ - `adafactor`: False
420
+ - `group_by_length`: False
421
+ - `length_column_name`: length
422
+ - `ddp_find_unused_parameters`: None
423
+ - `ddp_bucket_cap_mb`: None
424
+ - `ddp_broadcast_buffers`: False
425
+ - `dataloader_pin_memory`: True
426
+ - `dataloader_persistent_workers`: False
427
+ - `skip_memory_metrics`: True
428
+ - `use_legacy_prediction_loop`: False
429
+ - `push_to_hub`: False
430
+ - `resume_from_checkpoint`: None
431
+ - `hub_model_id`: None
432
+ - `hub_strategy`: every_save
433
+ - `hub_private_repo`: False
434
+ - `hub_always_push`: False
435
+ - `gradient_checkpointing`: False
436
+ - `gradient_checkpointing_kwargs`: None
437
+ - `include_inputs_for_metrics`: False
438
+ - `eval_do_concat_batches`: True
439
+ - `fp16_backend`: auto
440
+ - `push_to_hub_model_id`: None
441
+ - `push_to_hub_organization`: None
442
+ - `mp_parameters`:
443
+ - `auto_find_batch_size`: False
444
+ - `full_determinism`: False
445
+ - `torchdynamo`: None
446
+ - `ray_scope`: last
447
+ - `ddp_timeout`: 1800
448
+ - `torch_compile`: False
449
+ - `torch_compile_backend`: None
450
+ - `torch_compile_mode`: None
451
+ - `dispatch_batches`: None
452
+ - `split_batches`: None
453
+ - `include_tokens_per_second`: False
454
+ - `include_num_input_tokens_seen`: False
455
+ - `neftune_noise_alpha`: None
456
+ - `optim_target_modules`: None
457
+ - `batch_eval_metrics`: False
458
+ - `batch_sampler`: no_duplicates
459
+ - `multi_dataset_batch_sampler`: proportional
460
+
461
+ </details>
462
+
463
+ ### Training Logs
464
+ | Epoch | Step | Training Loss | dim_768_cosine_map@100 |
465
+ |:-------:|:-------:|:-------------:|:----------------------:|
466
+ | 0.0319 | 10 | 0.6581 | - |
467
+ | 0.0639 | 20 | 0.4842 | - |
468
+ | 0.0958 | 30 | 0.3555 | - |
469
+ | 0.1278 | 40 | 0.2398 | - |
470
+ | 0.1597 | 50 | 0.2917 | - |
471
+ | 0.1917 | 60 | 0.2286 | - |
472
+ | 0.2236 | 70 | 0.1903 | - |
473
+ | 0.2556 | 80 | 0.1832 | - |
474
+ | 0.2875 | 90 | 0.2899 | - |
475
+ | 0.3195 | 100 | 0.1744 | - |
476
+ | 0.3514 | 110 | 0.2148 | - |
477
+ | 0.3834 | 120 | 0.1379 | - |
478
+ | 0.4153 | 130 | 0.2123 | - |
479
+ | 0.4473 | 140 | 0.2445 | - |
480
+ | 0.4792 | 150 | 0.1481 | - |
481
+ | 0.5112 | 160 | 0.1392 | - |
482
+ | 0.5431 | 170 | 0.2218 | - |
483
+ | 0.5751 | 180 | 0.2225 | - |
484
+ | 0.6070 | 190 | 0.2874 | - |
485
+ | 0.6390 | 200 | 0.1927 | - |
486
+ | 0.6709 | 210 | 0.2469 | - |
487
+ | 0.7029 | 220 | 0.1915 | - |
488
+ | 0.7348 | 230 | 0.1711 | - |
489
+ | 0.7668 | 240 | 0.1982 | - |
490
+ | 0.7987 | 250 | 0.1783 | - |
491
+ | 0.8307 | 260 | 0.2016 | - |
492
+ | 0.8626 | 270 | 0.211 | - |
493
+ | 0.8946 | 280 | 0.1962 | - |
494
+ | 0.9265 | 290 | 0.1867 | - |
495
+ | 0.9585 | 300 | 0.195 | - |
496
+ | 0.9904 | 310 | 0.2161 | - |
497
+ | **1.0** | **313** | **-** | **0.6473** |
498
+
499
+ * The bold row denotes the saved checkpoint.
500
+
501
+ ### Framework Versions
502
+ - Python: 3.10.14
503
+ - Sentence Transformers: 3.0.1
504
+ - Transformers: 4.41.2
505
+ - PyTorch: 2.1.2+cu121
506
+ - Accelerate: 0.31.0
507
+ - Datasets: 2.19.1
508
+ - Tokenizers: 0.19.1
509
+
510
+ ## Citation
511
+
512
+ ### BibTeX
513
+
514
+ #### Sentence Transformers
515
+ ```bibtex
516
+ @inproceedings{reimers-2019-sentence-bert,
517
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
518
+ author = "Reimers, Nils and Gurevych, Iryna",
519
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
520
+ month = "11",
521
+ year = "2019",
522
+ publisher = "Association for Computational Linguistics",
523
+ url = "https://arxiv.org/abs/1908.10084",
524
+ }
525
+ ```
526
+
527
+ #### MatryoshkaLoss
528
+ ```bibtex
529
+ @misc{kusupati2024matryoshka,
530
+ title={Matryoshka Representation Learning},
531
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
532
+ year={2024},
533
+ eprint={2205.13147},
534
+ archivePrefix={arXiv},
535
+ primaryClass={cs.LG}
536
+ }
537
+ ```
538
+
539
+ #### MultipleNegativesRankingLoss
540
+ ```bibtex
541
+ @misc{henderson2017efficient,
542
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
543
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
544
+ year={2017},
545
+ eprint={1705.00652},
546
+ archivePrefix={arXiv},
547
+ primaryClass={cs.CL}
548
+ }
549
+ ```
550
+
551
+ <!--
552
+ ## Glossary
553
+
554
+ *Clearly define terms in order to be accessible across audiences.*
555
+ -->
556
+
557
+ <!--
558
+ ## Model Card Authors
559
+
560
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
561
+ -->
562
+
563
+ <!--
564
+ ## Model Card Contact
565
+
566
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
567
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cfcd787bd10a8e9a2ecb6d7f079ce6fbcb18904df617a35cba225ccf8f10e01
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff