MuhaoGuo commited on
Commit
be639cb
·
verified ·
1 Parent(s): 0947e71

init models

Browse files
Files changed (3) hide show
  1. data_utils.py +1113 -0
  2. main_variational.py +310 -0
  3. model.py +514 -0
data_utils.py ADDED
@@ -0,0 +1,1113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ from scipy.ndimage import gaussian_filter1d
4
+ from sklearn.preprocessing import MinMaxScaler
5
+ import torch
6
+ import torch.nn as nn
7
+ from torch.utils.data import Dataset, DataLoader
8
+ import random
9
+ import matplotlib.pyplot as plt
10
+ from torch.utils.data import DataLoader, TensorDataset
11
+ from pathlib import Path
12
+ import matplotlib.dates as mdates
13
+
14
+ # --- Utility Functions ---
15
+ def set_seed(seed):
16
+ random.seed(seed)
17
+ np.random.seed(seed)
18
+ torch.manual_seed(seed)
19
+ if torch.cuda.is_available():
20
+ torch.cuda.manual_seed(seed)
21
+ torch.cuda.manual_seed_all(seed)
22
+ torch.backends.cudnn.deterministic = True
23
+ torch.backends.cudnn.benchmark = False
24
+
25
+
26
+ # --- Data Loading and Initial Processing (from original) ---
27
+ def get_data_building_weather_weekly():
28
+ # path = "C:\\Software\\Probabilistic_Forecasting\\Data\\ashrae-energy-prediction"
29
+ # df_train = pd.read_csv(path + "\\train.csv")
30
+ # df_weather = pd.read_csv(path + "\\weather_train.csv")
31
+ # df_meta = pd.read_csv(path + "\\building_metadata.csv")
32
+
33
+ df_train = pd.read_csv("/Users/muhaoguo/Documents/study/Paper_Projects/PESGM/data/ashrae-energy-prediction/train.csv")
34
+ df_weather = pd.read_csv("/Users/muhaoguo/Documents/study/Paper_Projects/PESGM/data/ashrae-energy-prediction/weather_train.csv")
35
+ df_meta = pd.read_csv("/Users/muhaoguo/Documents/study/Paper_Projects/PESGM/data/ashrae-energy-prediction/building_metadata.csv")
36
+
37
+
38
+ df = df_train.merge(df_meta, on='building_id').merge(df_weather, on=['site_id', 'timestamp'])
39
+ df['timestamp'] = pd.to_datetime(df['timestamp'])
40
+ # Filter for a specific building, meter, and a reduced date range for faster processing if needed
41
+ df = df[(df['building_id'] == 2) & (df['meter'] == 0)]
42
+ df = df[(df['timestamp'] >= '2016-01-04') & (df['timestamp'] < '2017-01-04')] # Ensure enough data for ~50 weeks
43
+ df['Date'] = df['timestamp'].dt.date
44
+ df['day_of_week'] = df['timestamp'].dt.dayofweek # Monday=0, Sunday=6
45
+
46
+ def get_season(month):
47
+ return {12: 0, 1: 0, 2: 0, 3: 1, 4: 1, 5: 1, 6: 2, 7: 2, 8: 2, 9: 3, 10: 3, 11: 3}[month]
48
+
49
+ # Ensure 'meter_reading' and 'air_temperature' are present and numeric
50
+ df['meter_reading'] = pd.to_numeric(df['meter_reading'], errors='coerce').fillna(0)
51
+ df['air_temperature'] = pd.to_numeric(df['air_temperature'], errors='coerce').fillna(method='ffill').fillna(
52
+ method='bfill').fillna(15)
53
+
54
+ measurement_columns = ['meter_reading', 'air_temperature', 'Date', 'timestamp']
55
+ # Ensure columns exist, add placeholders if not
56
+ for col in measurement_columns:
57
+ if col not in df.columns and col not in ['Date']: # Date is derived
58
+ df[col] = 0 if col != 'timestamp' else pd.NaT
59
+
60
+ grouped = df.groupby('Date')[measurement_columns + ['day_of_week']]
61
+
62
+ array_3d, labels_3d, seasons_3d = [], [], []
63
+ dates = sorted(grouped.groups.keys())
64
+ if not dates:
65
+ print("Warning: No data after filtering in get_data_building_weather_weekly.")
66
+ # Return empty arrays with expected dimensions to avoid downstream errors immediately
67
+ return np.array([]), np.array([]), np.array([]), np.array([]), np.array([])
68
+
69
+ for date_val in dates:
70
+ group_df = grouped.get_group(date_val)
71
+ if group_df.empty or len(group_df) != 24: # Assuming hourly data, fill if not
72
+ # Create a full day template
73
+ full_day_timestamps = pd.to_datetime([f"{date_val} {h:02d}:00:00" for h in range(24)])
74
+ template_df = pd.DataFrame({'timestamp': full_day_timestamps})
75
+ group_df = pd.merge(template_df, group_df, on='timestamp', how='left')
76
+ group_df['Date'] = group_df['timestamp'].dt.date
77
+ group_df['day_of_week'] = group_df['timestamp'].dt.dayofweek
78
+ for col in ['meter_reading', 'air_temperature']:
79
+ group_df[col] = group_df[col].interpolate(method='linear').fillna(method='ffill').fillna(method='bfill')
80
+ group_df = group_df.fillna({'meter_reading': 0, 'air_temperature': 15}) # final fallback
81
+
82
+ arr = group_df[measurement_columns].values
83
+ label = 0 if group_df['day_of_week'].iloc[0] < 5 else 1 # Weekday/Weekend
84
+ season = get_season(group_df['timestamp'].iloc[0].month)
85
+ array_3d.append(arr)
86
+ labels_3d.append(np.full(len(arr), label))
87
+ seasons_3d.append(np.full(len(arr), season))
88
+
89
+ n_full_weeks = len(array_3d) // 7
90
+ if n_full_weeks == 0:
91
+ print("Warning: Not enough daily data to form even one full week.")
92
+ return np.array([]), np.array([]), np.array([]), np.array([]), np.array([])
93
+
94
+ energy, temp, times, workday, season_feat = [], [], [], [], []
95
+ for w in range(n_full_weeks):
96
+ wk = slice(w * 7, (w + 1) * 7)
97
+ week_data = array_3d[wk]
98
+ week_labels = labels_3d[wk]
99
+ week_seasons = seasons_3d[wk]
100
+
101
+ e = np.concatenate([np.asarray(d[:, 0], dtype=float) for d in week_data])
102
+ t = np.concatenate([np.asarray(d[:, 1], dtype=float) for d in week_data])
103
+ ts = np.concatenate([np.asarray(d[:, 3]) for d in week_data]) # timestamp objects
104
+ wl = np.concatenate([np.asarray(lbl, dtype=int) for lbl in week_labels])
105
+ sl = np.concatenate([np.asarray(seas, dtype=int) for seas in week_seasons])
106
+
107
+ if e.shape[0] != 168: # Skip incomplete weeks silently or handle
108
+ # print(f"Skipping week {w} due to incomplete data: {e.shape[0]} points")
109
+ continue
110
+
111
+ e = gaussian_filter1d(e, sigma=1)
112
+ t = gaussian_filter1d(t, sigma=1)
113
+
114
+ energy.append(e)
115
+ temp.append(t)
116
+ times.append(ts)
117
+ workday.append(wl)
118
+ season_feat.append(sl)
119
+
120
+ return np.array(times, dtype=object), np.array(energy), np.array(temp), np.array(workday), np.array(season_feat)
121
+
122
+
123
+ def gaussian_nll_loss(mu, logvar, target):
124
+ # mu, logvar, target → same shape [B, L+1, output_len, output_dim]
125
+ nll = 0.5 * (logvar + np.log(2 * np.pi) + ((target - mu) ** 2) / logvar.exp())
126
+ return nll.mean() # average over all elements
127
+
128
+ def kl_loss(mu_z, logvar_z):
129
+ return -0.5 * torch.mean(1 + logvar_z - mu_z.pow(2) - logvar_z.exp())
130
+
131
+
132
+
133
+ def process_seq2seq_data(
134
+ feature_dict,
135
+ *,
136
+ train_ratio = 0.7,
137
+ norm_features = ('load', 'temp'),
138
+ output_len = 24, # how many steps each decoder step predicts
139
+ encoder_len_weeks = 1,
140
+ decoder_len_weeks = 1,
141
+ num_in_week = 168, # ← NEW: default parameter
142
+ device = None):
143
+
144
+ # ----------------------------------------------------------
145
+ # 1. flatten, scale, keep 1‑D per feature
146
+ # ----------------------------------------------------------
147
+ processed, scalers = {}, {}
148
+ for k, arr in feature_dict.items():
149
+ if arr.size == 0:
150
+ raise ValueError(f"feature '{k}' is empty.")
151
+ vec = arr.astype(float).flatten() # weeks → long vector
152
+ if k in norm_features:
153
+ sc = MinMaxScaler()
154
+ processed[k] = sc.fit_transform(vec.reshape(-1, 1)).flatten()
155
+ scalers[k] = sc
156
+ else:
157
+ processed[k] = vec
158
+ scalers[k] = None
159
+
160
+ n_weeks = feature_dict['load'].shape[0]
161
+ need_weeks = encoder_len_weeks + decoder_len_weeks
162
+ if n_weeks < need_weeks:
163
+ raise ValueError(f"Need ≥{need_weeks} consecutive weeks, found {n_weeks}.")
164
+
165
+ enc_seq_len = encoder_len_weeks * num_in_week
166
+ dec_seq_len = decoder_len_weeks * num_in_week
167
+ L = dec_seq_len - output_len
168
+ if L <= 0:
169
+ raise ValueError("`output_len` must be smaller than decoder sequence length.")
170
+
171
+ # ----------------------------------------------------------
172
+ # 2. build samples (stride = 1 week)
173
+ # ----------------------------------------------------------
174
+ X_enc_l, X_enc_t, X_enc_w, X_enc_s = [], [], [], []
175
+ X_dec_in_l, X_dec_in_t, X_dec_in_w, X_dec_in_s = [], [], [], []
176
+ Y_dec_target_l = []
177
+
178
+ last_start = n_weeks - need_weeks # inclusive
179
+ for w in range(last_start + 1):
180
+ enc_start = w * num_in_week
181
+ enc_end = (w + encoder_len_weeks) * num_in_week
182
+ dec_start = enc_end
183
+ dec_end = dec_start + dec_seq_len # exclusive
184
+
185
+ # -- encoder --
186
+ X_enc_l.append(processed['load' ][enc_start:enc_end])
187
+ X_enc_t.append(processed['temp' ][enc_start:enc_end])
188
+ X_enc_w.append(processed['workday'][enc_start:enc_end])
189
+ X_enc_s.append(processed['season' ][enc_start:enc_end])
190
+
191
+ # -- decoder input (teacher forcing) --
192
+ X_dec_in_l.append(processed['load' ][dec_start : dec_start + L])
193
+ X_dec_in_t.append(processed['temp' ][dec_start : dec_start + L])
194
+ X_dec_in_w.append(processed['workday'][dec_start : dec_start + L])
195
+ X_dec_in_s.append(processed['season' ][dec_start : dec_start + L])
196
+
197
+ # -- decoder targets (sliding output_len window) --
198
+ load_dec_full = processed['load'][dec_start: dec_end]
199
+ targets = np.stack([
200
+ load_dec_full[i: i + output_len] for i in range(L+1)],
201
+ axis=0)
202
+ Y_dec_target_l.append(targets)
203
+
204
+ # ----------------------------------------------------------
205
+ # 3. pack → tensors
206
+ # ----------------------------------------------------------
207
+ to_tensor = lambda lst: torch.tensor(lst, dtype=torch.float32).unsqueeze(-1).to(device)
208
+
209
+ data_tensors = {
210
+ 'X_enc_l' : to_tensor(X_enc_l), # [B, enc_seq_len, 1]
211
+ 'X_enc_t' : to_tensor(X_enc_t),
212
+ 'X_enc_w' : to_tensor(X_enc_w),
213
+ 'X_enc_s' : to_tensor(X_enc_s),
214
+
215
+ 'X_dec_in_l' : to_tensor(X_dec_in_l), # [B, L, 1]
216
+ 'X_dec_in_t' : to_tensor(X_dec_in_t),
217
+ 'X_dec_in_w' : to_tensor(X_dec_in_w),
218
+ 'X_dec_in_s' : to_tensor(X_dec_in_s),
219
+
220
+ 'Y_dec_target_l': torch.tensor(
221
+ Y_dec_target_l, dtype=torch.float32).unsqueeze(-1).to(device) # [B, L, output_len, 1]
222
+ }
223
+
224
+ # quick check
225
+ for k, v in data_tensors.items():
226
+ print(f"{k:15s} {tuple(v.shape)}")
227
+
228
+ # ----------------------------------------------------------
229
+ # 4. train / test split
230
+ # ----------------------------------------------------------
231
+ B = data_tensors['X_enc_l'].shape[0]
232
+ split = int(train_ratio * B)
233
+ train_dict = {k: v[:split] for k, v in data_tensors.items()}
234
+ test_dict = {k: v[split:] for k, v in data_tensors.items()}
235
+
236
+ return train_dict, test_dict, scalers
237
+
238
+
239
+
240
+ def visualise_one_sample(data_dict, sample_idx=0):
241
+ """Draw a single figure with three subplots:
242
+ 1) encoder load, 2) decoder load, 3) heat‑map of Y_dec_target_l."""
243
+ enc = data_dict['X_enc_t'][sample_idx].cpu().numpy().squeeze(-1)
244
+ dec = data_dict['X_dec_in_t'][sample_idx].cpu().numpy().squeeze(-1)
245
+ tgt = data_dict['Y_dec_target_l'][sample_idx].cpu().numpy().squeeze(-1) # [L, output_len]
246
+
247
+ fig, axes = plt.subplots(3, 1, figsize=(14, 10), constrained_layout=True)
248
+
249
+ axes[0].plot(enc)
250
+ axes[0].set_title("Encoder input")
251
+ axes[0].set_xlabel("Time step"); axes[0].set_ylabel("scaled")
252
+
253
+ axes[1].plot(dec)
254
+ axes[1].set_title("Decoder input")
255
+ axes[1].set_xlabel("Time step")
256
+
257
+
258
+ axes[2].plot(tgt[0])
259
+ axes[2].plot(tgt[1])
260
+ axes[2].plot(tgt[2])
261
+ axes[2].set_title("Decoder target")
262
+ axes[2].set_xlabel("Time step")
263
+
264
+ plt.show()
265
+
266
+ def make_loader(data_dict, batch_size, shuffle=True):
267
+ """
268
+ Returns: batch =
269
+ (enc_l, enc_t, enc_w, enc_s,
270
+ dec_l, dec_t, dec_w, dec_s,
271
+ tgt)
272
+ Shapes:
273
+ enc_* : [B, enc_seq, 1]
274
+ dec_* : [B, L, 1]
275
+ tgt : [B, L+1, output_len, 1]
276
+ """
277
+ tensors = (
278
+ data_dict['X_enc_l'], data_dict['X_enc_t'],
279
+ data_dict['X_enc_w'], data_dict['X_enc_s'],
280
+ data_dict['X_dec_in_l'], data_dict['X_dec_in_t'],
281
+ data_dict['X_dec_in_w'], data_dict['X_dec_in_s'],
282
+ data_dict['Y_dec_target_l']
283
+ )
284
+ ds = TensorDataset(*tensors)
285
+ return DataLoader(ds, batch_size=batch_size, shuffle=shuffle)
286
+
287
+ def reconstruct_sequence(pred_seq):
288
+ """
289
+ Averages overlapping predictions from [L+1, output_len] into [L+output_len]
290
+ Args:
291
+ pred_seq: [L+1, output_len] – single sample prediction
292
+ Returns:
293
+ avg_pred: [L+output_len] – averaged sequence
294
+ """
295
+ L_plus_1, output_len = pred_seq.shape
296
+ total_len = L_plus_1 + output_len - 1
297
+ sum_seq = torch.zeros(total_len, device=pred_seq.device)
298
+ count_seq = torch.zeros(total_len, device=pred_seq.device)
299
+
300
+ for t in range(L_plus_1):
301
+ sum_seq[t:t+output_len] += pred_seq[t]
302
+ count_seq[t:t+output_len] += 1
303
+
304
+ return sum_seq / count_seq # [L+output_len]
305
+
306
+
307
+
308
+ def get_load_temperature_spanish():
309
+ '''
310
+ https://www.kaggle.com/datasets/nicholasjhana/energy-consumption-generation-prices-and-weather
311
+ '''
312
+ # Load the energy dataset and weather features
313
+ energy_df = pd.read_csv('/Users/muhaoguo/Documents/study/Paper_Projects/PESGM/data/kaggle/energy_dataset.csv')
314
+ weather_df = pd.read_csv('/Users/muhaoguo/Documents/study/Paper_Projects/PESGM/data/kaggle/weather_features.csv')
315
+
316
+ # Convert timestamp columns to datetime format for easier merging and plotting
317
+ energy_df['time'] = pd.to_datetime(energy_df['time'])
318
+ weather_df['time'] = pd.to_datetime(weather_df['dt_iso'])
319
+
320
+ # Merge datasets on the 'timestamp' column
321
+ merged_df = pd.merge(energy_df, weather_df, on='time', how='inner')
322
+ merged_df = merged_df[['time', 'temp', 'total load actual']].dropna()
323
+ merged_df = merged_df[::5]
324
+
325
+ time = merged_df["time"].values
326
+ print(time)
327
+ exit()
328
+ temperature = (merged_df["temp"] - 273.15).values # from Kelvin (K) to degrees Celsius (°C),
329
+ load = merged_df["total load actual"].values/1000 # from MW to (×10³ MW)
330
+
331
+ temperature = gaussian_filter1d(temperature, sigma=2)
332
+ load = gaussian_filter1d(load, sigma=2)
333
+
334
+ # Plotting temperature and load on the same figure
335
+ fig, ax1 = plt.subplots(figsize=(14, 6))
336
+ # Plot temperature with left y-axis
337
+ ax1.plot(time, temperature, label='Temperature', color='orange', linewidth=2)
338
+ ax1.set_ylabel('Temperature (°C)', color='orange', fontsize=20)
339
+ ax1.tick_params(axis='y', labelcolor='orange', labelsize=20)
340
+ ax1.tick_params(axis='x', labelsize=20)
341
+ # Create a second y-axis for load
342
+ ax2 = ax1.twinx()
343
+ ax2.plot(time, load, label='Power Load', color='darkblue', linewidth=2)
344
+ ax2.set_ylabel('Power Load (×10³ MW)', color='darkblue', fontsize=20)
345
+ ax2.tick_params(axis='y', labelcolor='darkblue', labelsize=20)
346
+ ax2.tick_params(axis='x', labelsize=20)
347
+ # Title and layout adjustments
348
+ fig.suptitle('Temperature and Power Load Over Time', fontsize=20)
349
+ fig.autofmt_xdate(rotation=45)
350
+ plt.tight_layout()
351
+ # plt.savefig("./results/raw_load_temp_spanish.pdf")
352
+ plt.show()
353
+ print(time.shape, load.shape, temperature.shape)
354
+ return time, load, temperature
355
+
356
+
357
+ def get_data_spanish_weekly():
358
+ """
359
+ Weekly load-temperature slices for Spain
360
+ —————————————————————————————————————————————————
361
+ Returns
362
+ -------
363
+ times : np.ndarray, dtype=object, shape (n_weeks,)
364
+ energy : np.ndarray, shape (n_weeks, 168)
365
+ temp : np.ndarray, shape (n_weeks, 168)
366
+ workday : np.ndarray, shape (n_weeks, 168)
367
+ season_feat : np.ndarray, shape (n_weeks, 168)
368
+ """
369
+ # ---------- raw files --------------------------------------------------
370
+ p_energy = "/Users/muhaoguo/Documents/study/Paper_Projects/PESGM/data/kaggle/energy_dataset.csv"
371
+ p_weather = "/Users/muhaoguo/Documents/study/Paper_Projects/PESGM/data/kaggle/weather_features.csv"
372
+
373
+ # ---------- pre-processing & merge ------------------------------------
374
+ energy_df = pd.read_csv(p_energy)
375
+ weather_df = pd.read_csv(p_weather)
376
+
377
+ energy_df["time"] = pd.to_datetime(energy_df["time"], utc=True)
378
+ weather_df["time"] = pd.to_datetime(weather_df["dt_iso"], utc=True)
379
+ df = pd.merge(energy_df, weather_df, on="time", how="inner")
380
+ df = df[::5]
381
+ df = df[1:]
382
+
383
+ df["time"] = df["time"].dt.tz_convert(None) # or .dt.tz_localize(None)
384
+ df = df[["time", "temp", "total load actual"]].dropna()
385
+ df["Date"] = df["time"].dt.date # now works
386
+ df["day_of_week"] = df["time"].dt.dayofweek
387
+ df["air_temperature"] = (df["temp"] - 273.15).astype(float)
388
+ df["meter_reading"] = (df["total load actual"] / 1000).astype(float)
389
+
390
+ # ---------- season helper ---------------------------------------------
391
+ def get_season(month: int) -> int:
392
+ return {12: 0, 1: 0, 2: 0, 3: 1, 4: 1, 5: 1,
393
+ 6: 2, 7: 2, 8: 2, 9: 3, 10: 3, 11: 3}[month]
394
+
395
+ # ---------- daily grouping (24 samples each) ---------------------------
396
+ meas_cols = ["meter_reading", "air_temperature", "Date", "time"]
397
+ grouped = df.groupby("Date")[meas_cols + ["day_of_week"]]
398
+
399
+ array_3d, labels_3d, seasons_3d = [], [], []
400
+ for date_val in sorted(grouped.groups.keys()):
401
+ gdf = grouped.get_group(date_val)
402
+
403
+ # make sure we have *exactly* 24 hourly rows
404
+ if len(gdf) != 24:
405
+ full_hours = pd.date_range(start=f"{date_val} 00:00:00",
406
+ end=f"{date_val} 23:00:00",
407
+ freq="H")
408
+ tmpl = pd.DataFrame({"time": full_hours})
409
+ gdf = pd.merge(tmpl, gdf, on="time", how="left")
410
+ gdf["Date"] = gdf["time"].dt.date
411
+ gdf["day_of_week"] = gdf["time"].dt.dayofweek
412
+ for c in ["meter_reading", "air_temperature"]:
413
+ gdf[c] = (gdf[c]
414
+ .interpolate("linear")
415
+ .ffill()
416
+ .bfill()
417
+ )
418
+ gdf.fillna({"meter_reading": 0, "air_temperature": 15}, inplace=True)
419
+
420
+ arr = gdf[meas_cols].values
421
+ w_label = 0 if gdf["day_of_week"].iloc[0] < 5 else 1
422
+ season = get_season(gdf["time"].iloc[0].month)
423
+
424
+ array_3d.append(arr)
425
+ labels_3d.append(np.full(len(arr), w_label))
426
+ seasons_3d.append(np.full(len(arr), season))
427
+
428
+ # ---------- pack consecutive days into full weeks ---------------------
429
+ n_full_weeks = len(array_3d) // 7
430
+ if n_full_weeks == 0:
431
+ return (np.array([]),) * 5
432
+
433
+ energy, temp, times, workday, season_feat = [], [], [], [], []
434
+ for w in range(n_full_weeks):
435
+ wk = slice(w * 7, (w + 1) * 7)
436
+ week_d = array_3d[wk]
437
+ w_lbls = labels_3d[wk]
438
+ w_seas = seasons_3d[wk]
439
+
440
+ e = np.concatenate([d[:, 0].astype(float) for d in week_d])
441
+ t = np.concatenate([d[:, 1].astype(float) for d in week_d])
442
+ ts = np.concatenate([d[:, 3] for d in week_d]) # timestamps
443
+ wl = np.concatenate([lbl.astype(int) for lbl in w_lbls])
444
+ sl = np.concatenate([s.astype(int) for s in w_seas])
445
+
446
+ if e.size != 168: # incomplete week – skip
447
+ continue
448
+
449
+ energy.append(gaussian_filter1d(e, sigma=1))
450
+ temp.append(gaussian_filter1d(t, sigma=1))
451
+ times.append(ts)
452
+ workday.append(wl)
453
+ season_feat.append(sl)
454
+
455
+ return (np.array(times, dtype=object),
456
+ np.array(energy),
457
+ np.array(temp),
458
+ np.array(workday),
459
+ np.array(season_feat))
460
+
461
+
462
+
463
+ def get_data_power_consumption():
464
+ """
465
+ https://www.kaggle.com/datasets/fedesoriano/electric-power-consumption
466
+ Loads a CSV containing at least:
467
+ ['Date Time', 'Temperature', 'Zone 1 Power Consumption']
468
+ and does a simple time-series plot of Zone 1 vs. Temperature.
469
+ """
470
+ # 1) Load data
471
+ file_path = "/Users/muhaoguo/Documents/study/Paper_Projects/PESGM/data/powerconsumption/powerconsumption.csv" # <-- Adjust to your actual CSV
472
+ df = pd.read_csv(file_path)
473
+
474
+ # 2) Parse datetime and sort
475
+ # We assume a combined 'Date Time' column, like '2020-01-01 00:10:00'
476
+ df['Date Time'] = pd.to_datetime(df['Datetime'])
477
+ df.sort_values(by='Date Time', inplace=True)
478
+
479
+ # 3) Select only needed columns
480
+ # We pick 'Zone 1 Power Consumption' & 'Temperature'
481
+ df_filtered = df[['Date Time', 'Temperature', 'PowerConsumption_Zone1']].copy()
482
+
483
+ # 4) Convert to numeric (in case CSV has strings)
484
+ # Coerce errors => NaN
485
+ df_filtered['Temperature'] = pd.to_numeric(df_filtered['Temperature'], errors='coerce')
486
+ df_filtered['Zone 1 Power Consumption'] = pd.to_numeric(df_filtered['PowerConsumption_Zone1'], errors='coerce')
487
+
488
+ # 5) Drop rows with missing values if needed
489
+ df_filtered.dropna(subset=['Temperature', 'Zone 1 Power Consumption'], inplace=True)
490
+ scaler = MinMaxScaler()
491
+ df_filtered[['Temperature', 'Zone 1 Power Consumption']] = scaler.fit_transform(
492
+ df_filtered[['Temperature', 'Zone 1 Power Consumption']]
493
+ )
494
+
495
+ # 6) Simple Plot: Time series of Zone1 and Temperature
496
+ fig, ax1 = plt.subplots(figsize=(10, 5))
497
+ # Plot Zone 1 Power on ax1
498
+ color1 = 'tab:blue'
499
+ ax1.set_xlabel('Date Time')
500
+ ax1.set_ylabel('Zone 1 Power Consumption', color=color1)
501
+ ax1.plot(df_filtered['Date Time'], df_filtered['Zone 1 Power Consumption'], color=color1, label='Zone1 Power')
502
+ ax1.tick_params(axis='y', labelcolor=color1)
503
+
504
+ # Create a second y-axis for Temperature
505
+ ax2 = ax1.twinx() # shares x-axis
506
+ color2 = 'tab:red'
507
+ ax2.set_ylabel('Temperature', color=color2)
508
+ ax2.plot(df_filtered['Date Time'], df_filtered['Temperature'], color=color2, label='Temperature')
509
+ ax2.tick_params(axis='y', labelcolor=color2)
510
+ plt.title('Zone 1 Power Consumption and Temperature Over Time')
511
+ fig.tight_layout()
512
+
513
+
514
+ # --------------------------------------------------------
515
+ # 7) Reshape the data: separate by date
516
+ # => new shape: [#dates, #values_in_one_day]
517
+ # --------------------------------------------------------
518
+ # Extract the date and the time of day (as a string HH:MM:SS)
519
+ df_filtered['Date'] = df_filtered['Date Time'].dt.date
520
+ df_filtered['TimeOfDay'] = df_filtered['Date Time'].dt.strftime('%H:%M:%S')
521
+
522
+ # Pivot so each row is one date, each column is a time of day
523
+ pivot_time = df_filtered.pivot(index='Date', columns='TimeOfDay', values='Date Time')
524
+ pivot_power = df_filtered.pivot(index='Date', columns='TimeOfDay', values='Zone 1 Power Consumption')
525
+ pivot_temp = df_filtered.pivot(index='Date', columns='TimeOfDay', values='Temperature')
526
+
527
+ # Sort the columns so time-of-day is in ascending order (00:00:00 < 00:10:00 < ...)
528
+ pivot_time = pivot_time.reindex(sorted(pivot_time.columns), axis=1)
529
+ pivot_power = pivot_power.reindex(sorted(pivot_power.columns), axis=1)
530
+ pivot_temp = pivot_temp.reindex(sorted(pivot_temp.columns), axis=1)
531
+
532
+
533
+ # 9) Create workday/weekend label
534
+ workday_label = np.array([
535
+ [1 if pd.Timestamp(date).weekday() >= 5 else 0] * pivot_power.shape[1]
536
+ for date in pivot_power.index
537
+ ])
538
+
539
+ # --------------------------------------------------------
540
+ # 8) Plot daily profiles (one line per date)
541
+ # --------------------------------------------------------
542
+ # Plot Zone 1 Power
543
+ plt.figure(figsize=(10,4))
544
+ for date_idx in pivot_power.index:
545
+ plt.plot(pivot_power.columns, pivot_power.loc[date_idx, :], label=str(date_idx), alpha=0.4, color="gray")
546
+ plt.title("Daily Profile of Zone 1 Power Consumption")
547
+ plt.xlabel("Time of Day (HH:MM:SS)")
548
+ plt.ylabel("Scaled Power Consumption")
549
+ # Uncomment to show legend with all dates
550
+ # plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
551
+ plt.tight_layout()
552
+
553
+ # Plot Temperature
554
+ plt.figure(figsize=(10,4))
555
+ for date_idx in pivot_temp.index:
556
+ plt.plot(pivot_temp.columns, pivot_temp.loc[date_idx, :], label=str(date_idx), alpha=0.4, color="green")
557
+ plt.title("Daily Profile of Temperature")
558
+ plt.xlabel("Time of Day (HH:MM:SS)")
559
+ plt.ylabel("Scaled Temperature")
560
+ # plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
561
+ plt.tight_layout()
562
+
563
+
564
+ # 10) Visualize one week of Power, Temperature, and Workday Label
565
+ week_index = 0 # Change this to shift the week (e.g., 7 for second week)
566
+ days_to_plot = 7
567
+ power_week = pivot_power.iloc[week_index:week_index+days_to_plot, :].to_numpy().flatten()
568
+ temp_week = pivot_temp.iloc[week_index:week_index+days_to_plot, :].to_numpy().flatten()
569
+ label_week = workday_label[week_index:week_index+days_to_plot, :].flatten()
570
+
571
+ time_axis = np.arange(len(power_week)) # X-axis for plotting
572
+ plt.figure(figsize=(12, 4))
573
+ plt.plot(time_axis, power_week, label='Power', linewidth=1)
574
+ plt.plot(time_axis, temp_week, label='Temperature', linewidth=1)
575
+ plt.plot(time_axis, label_week, label='Workday Label', linewidth=2, linestyle='--')
576
+ plt.title("One Week of Power, Temperature, and Workday Labels")
577
+ plt.xlabel("10-minute Intervals over 7 Days")
578
+ plt.ylabel("Normalized Value")
579
+ plt.legend()
580
+ plt.grid(True)
581
+ plt.tight_layout()
582
+ # plt.savefig("results/one_week_data.pdf")
583
+ plt.show()
584
+
585
+ return np.array(pivot_time), np.array(pivot_power), np.array(pivot_temp)
586
+
587
+
588
+ def plot_data(times, energy, temp, workday, season_feat,
589
+ alpha=0.5, lw=1.0, cmap="viridis"):
590
+ """
591
+ Overlay *all* weeks in four side-by-side sub-figures.
592
+
593
+ Parameters
594
+ ----------
595
+ times, energy, temp, workday, season_feat : list/ndarray
596
+ Output from your get_data_…_weekly routine.
597
+ alpha : float
598
+ Per-curve transparency (≤1). Lower → less clutter.
599
+ lw : float
600
+ Line width.
601
+ cmap : str or matplotlib Colormap
602
+ Used to give each week a slightly different colour.
603
+ """
604
+ n_weeks = len(times)
605
+ if n_weeks == 0:
606
+ print("Nothing to plot.")
607
+ return
608
+
609
+ # colour map to distinguish weeks (wraps if >256)
610
+ colours = plt.cm.get_cmap(cmap, n_weeks)
611
+
612
+ fig, axes = plt.subplots(
613
+ nrows=1, ncols=4, figsize=(22, 4),
614
+ sharex=False, sharey=False,
615
+ gridspec_kw={"wspace": 0.25})
616
+
617
+ date_fmt = mdates.DateFormatter("%b\n%d")
618
+
619
+ # -------------------------------------------------------------
620
+ # iterate once, plotting the same week on all four axes
621
+ # -------------------------------------------------------------
622
+ for w in range(n_weeks):
623
+ c = colours(w)
624
+
625
+ axes[0].plot(times[w], energy[w], color=c, alpha=alpha, lw=lw)
626
+ axes[1].plot(times[w], temp[w], color=c, alpha=alpha, lw=lw)
627
+ axes[2].step(times[w], workday[w], where="mid",
628
+ color=c, alpha=alpha, lw=lw)
629
+ axes[3].step(times[w], season_feat[w], where="mid",
630
+ color=c, alpha=alpha, lw=lw)
631
+
632
+ # -------------------------------------------------------------
633
+ # cosmetics
634
+ # -------------------------------------------------------------
635
+ axes[0].set_title("Energy (norm.)")
636
+ axes[0].set_ylabel("0–1")
637
+ axes[1].set_title("Temperature (norm.)")
638
+ axes[2].set_title("Weekend flag")
639
+ axes[2].set_ylim(-0.1, 1.1)
640
+ axes[3].set_title("Season (0–3)")
641
+ axes[3].set_ylim(-0.2, 3.2)
642
+
643
+ for ax in axes:
644
+ ax.xaxis.set_major_formatter(date_fmt)
645
+ ax.tick_params(axis="x", rotation=45, labelsize=8)
646
+
647
+ fig.suptitle(f"Overlay of {n_weeks} weeks", fontsize=15, y=1.02)
648
+ plt.tight_layout()
649
+ plt.show()
650
+
651
+ ##
652
+ fig, axes = plt.subplots( nrows=1, ncols=4, figsize=(22, 4), sharex=False, sharey=False, gridspec_kw={"wspace": 0.25})
653
+ date_fmt = mdates.DateFormatter("%b\n%d")
654
+ # -------------------------------------------------------------
655
+ # iterate once, plotting the same week on all four axes
656
+ # -------------------------------------------------------------
657
+ for w in range(n_weeks):
658
+ c = colours(w)
659
+ axes[0].plot(energy[w], color=c, alpha=alpha, lw=lw)
660
+ axes[1].plot(temp[w], color=c, alpha=alpha, lw=lw)
661
+ axes[2].plot(workday[w], color=c, alpha=alpha, lw=lw)
662
+ axes[3].plot(season_feat[w], color=c, alpha=alpha, lw=lw)
663
+
664
+ # -------------------------------------------------------------
665
+ # cosmetics
666
+ # -------------------------------------------------------------
667
+ axes[0].set_title("Energy (norm.)")
668
+ axes[0].set_ylabel("0–1")
669
+ axes[1].set_title("Temperature (norm.)")
670
+ axes[2].set_title("Weekend flag")
671
+ axes[2].set_ylim(-0.1, 1.1)
672
+ axes[3].set_title("Season (0–3)")
673
+ axes[3].set_ylim(-0.2, 3.2)
674
+
675
+ for ax in axes:
676
+ ax.xaxis.set_major_formatter(date_fmt)
677
+ ax.tick_params(axis="x", rotation=45, labelsize=8)
678
+
679
+ fig.suptitle(f"Overlay of {n_weeks} weeks", fontsize=15, y=1.02)
680
+ plt.tight_layout()
681
+ plt.show()
682
+
683
+
684
+
685
+
686
+ def get_data_power_consumption_weekly():
687
+ """
688
+ Weekly load-temperature slices (Zone-1 household data)
689
+ ------------------------------------------------------
690
+ Returns
691
+ -------
692
+ times : ndarray[object] – n_weeks, each element len = points_per_day*7
693
+ energy : ndarray[float] – n_weeks × (points_per_day*7)
694
+ temp : ndarray[float] – idem
695
+ workday : ndarray[int] – idem (0 weekday, 1 weekend)
696
+ season_feat : ndarray[int] – idem (0-winter … 3-autumn)
697
+ """
698
+ csv_path = Path("/Users/muhaoguo/Documents/study/Paper_Projects/PESGM/data/powerconsumption/powerconsumption.csv")
699
+
700
+ # ── 1. Read & basic cleaning ──────────────────────────────────────────
701
+ df = pd.read_csv(csv_path)
702
+ # column names vary slightly across versions → be defensive
703
+ time_col = next(c for c in df.columns if c.lower().startswith(("date time", "datetime")))
704
+ temp_col = next(c for c in df.columns if "temp" in c.lower())
705
+ power_col= next(c for c in df.columns if "zone1" in c.lower())
706
+
707
+ df["time"] = pd.to_datetime(df[time_col])
708
+ df["air_temperature"] = pd.to_numeric(df[temp_col], errors="coerce")
709
+ df["meter_reading"] = pd.to_numeric(df[power_col], errors="coerce")
710
+ df = df[["time", "air_temperature", "meter_reading"]].dropna()
711
+ df = df[::6]
712
+ # print(df)
713
+ df.sort_values("time", inplace=True)
714
+
715
+ for c in ["air_temperature", "meter_reading"]:
716
+ col_min, col_max = df[c].min(), df[c].max()
717
+ df[c] = (df[c] - col_min) / (col_max - col_min)
718
+
719
+ # ── 2. Identify full days & points-per-day ────────────────────────────
720
+ df["date"] = df["time"].dt.date
721
+ day_counts = df.groupby("date").size()
722
+ points_per_day = int(day_counts.mode().iloc[0]) # most common daily length
723
+
724
+ full_dates = day_counts[day_counts == points_per_day].index
725
+ df = df[df["date"].isin(full_dates)].copy()
726
+
727
+ # ── 3. Season & weekday helpers ───────────────────────────────────────
728
+ def get_season(month):
729
+ return {12:0,1:0,2:0,3:1,4:1,5:1,6:2,7:2,8:2,9:3,10:3,11:3}[month]
730
+
731
+ # ── 4. Daily arrays (guaranteed length = points_per_day) ──────────────
732
+ meas_cols = ["meter_reading", "air_temperature", "date", "time"]
733
+ grouped = df.groupby("date")[meas_cols]
734
+
735
+ array_3d, labels_3d, seasons_3d = [], [], []
736
+ for d in sorted(grouped.groups.keys()):
737
+ g = grouped.get_group(d).sort_values("time")
738
+ # (No need to re-index; we already filtered to full days.)
739
+ arr = g[meas_cols].values
740
+ w_label = 0 if g["time"].dt.dayofweek.iloc[0] < 5 else 1
741
+ season = get_season(g["time"].iloc[0].month)
742
+
743
+ array_3d.append(arr)
744
+ labels_3d.append(np.full(points_per_day, w_label))
745
+ seasons_3d.append(np.full(points_per_day, season))
746
+
747
+ # ── 5. Pack into complete weeks (7 consecutive full days) ─────────────
748
+ n_full_weeks = len(array_3d) // 7
749
+ if n_full_weeks == 0:
750
+ return (np.array([]),) * 5
751
+
752
+ sigma = max(1, points_per_day // 24) # ≈ 1-hour smoothing
753
+ energy, temp, times, workday, season_feat = [], [], [], [], []
754
+
755
+ for w in range(n_full_weeks):
756
+
757
+ wk = slice(w*7, (w+1)*7)
758
+ week_d, w_lbls, w_seas = array_3d[wk], labels_3d[wk], seasons_3d[wk]
759
+
760
+ e = np.asarray(np.concatenate([d[:, 0] for d in week_d]), dtype=float)
761
+ t = np.asarray(np.concatenate([d[:, 1] for d in week_d]), dtype=float)
762
+ ts = np.concatenate([d[:,3] for d in week_d])
763
+ wl = np.concatenate(w_lbls)
764
+ sl = np.concatenate(w_seas)
765
+
766
+ energy.append(gaussian_filter1d(e, sigma=sigma))
767
+ temp.append(gaussian_filter1d(t, sigma=sigma))
768
+ times.append(ts)
769
+ workday.append(wl)
770
+ season_feat.append(sl)
771
+
772
+ # plot_data(times, energy, temp, workday, season_feat)
773
+
774
+ return (np.array(times, dtype=object),
775
+ np.array(energy),
776
+ np.array(temp),
777
+ np.array(workday),
778
+ np.array(season_feat))
779
+
780
+
781
+
782
+
783
+ def get_data_kaggle_2():
784
+ """
785
+ https://www.kaggle.com/datasets/srinuti/residential-power-usage-3years-data-timeseries
786
+ Loads the 'power_usage_2016_to_2020.csv' and 'weather_2016_2020_daily.csv' datasets,
787
+ merges them by date, creates daily profiles, and plots a single week of data
788
+ (Power, Temperature, Workday Label) in a flattened time series.
789
+ """
790
+ load_file = "/Users/muhaoguo/Documents/study/Paper_Projects/PESGM/data/Kaggle_2/power_usage_2016_to_2020.csv"
791
+ df_load = pd.read_csv(load_file)
792
+ df_load['DateTime'] = pd.to_datetime(df_load['StartDate'])
793
+ df_load['Date'] = df_load['DateTime'].dt.date
794
+ df_load.rename(columns={'Value (kWh)': 'Power'}, inplace=True)
795
+
796
+ weather_file = "/Users/muhaoguo/Documents/study/Paper_Projects/PESGM/data/Kaggle_2/weather_2016_2020_daily.csv"
797
+ df_weather = pd.read_csv(weather_file)
798
+
799
+ df_weather['Date'] = pd.to_datetime(df_weather['Date']).dt.date
800
+ df_weather.rename(columns={'Temp_avg': 'Temperature'}, inplace=True)
801
+ df_weather = df_weather[['Date', 'Temperature']]
802
+
803
+
804
+ df_merged = pd.merge(df_load, df_weather, on='Date', how='left')
805
+
806
+ df_merged.sort_values(by='DateTime', inplace=True)
807
+ df_merged.dropna(subset=['Power', 'Temperature'], inplace=True)
808
+
809
+ scaler = MinMaxScaler()
810
+ df_merged[['Power', 'Temperature']] = scaler.fit_transform(df_merged[['Power', 'Temperature']])
811
+ df_merged['TimeOfDay'] = df_merged['DateTime'].dt.strftime('%H:%M:%S')
812
+
813
+ pivot_power = df_merged.pivot(index='Date', columns='TimeOfDay', values='Power')
814
+ pivot_temp = df_merged.pivot(index='Date', columns='TimeOfDay', values='Temperature')
815
+ pivot_time = df_merged.pivot(index='Date', columns='TimeOfDay', values='DateTime')
816
+
817
+ # Sort columns so time-of-day is in ascending order
818
+ pivot_power = pivot_power.reindex(sorted(pivot_power.columns), axis=1)
819
+ pivot_temp = pivot_temp.reindex(sorted(pivot_temp.columns), axis=1)
820
+ pivot_time = pivot_time.reindex(sorted(pivot_time.columns), axis=1)
821
+
822
+
823
+ pivot_dates = pivot_power.index # these are datetime.date objects
824
+
825
+ df_day = df_load.groupby('Date')['day_of_week'].first().reindex(pivot_dates)
826
+ weekend_indicator = df_day.isin([5, 6]).astype(int).values # 1 if day_of_week in [6,7], else 0
827
+
828
+ workday_label_2D = np.array([
829
+ [weekend_indicator[i]] * pivot_power.shape[1]
830
+ for i in range(len(pivot_dates))
831
+ ])
832
+ print(workday_label_2D)
833
+ plt.figure(figsize=(10, 4))
834
+ for date_idx in pivot_power.index:
835
+ plt.plot(
836
+ pivot_power.columns,
837
+ pivot_power.loc[date_idx, :],
838
+ label=str(date_idx), alpha=0.4, color="gray"
839
+ )
840
+ plt.title("Daily Profile of Power")
841
+ plt.xlabel("Time of Day")
842
+ plt.ylabel("Scaled Power")
843
+ plt.tight_layout()
844
+ plt.show()
845
+
846
+ # 7b) Plot daily temperature profiles
847
+ plt.figure(figsize=(10, 4))
848
+ for date_idx in pivot_temp.index:
849
+ plt.plot(
850
+ pivot_temp.columns,
851
+ pivot_temp.loc[date_idx, :],
852
+ label=str(date_idx), alpha=0.4, color="blue"
853
+ )
854
+ plt.title("Daily Profile of Temperature")
855
+ plt.xlabel("Time of Day")
856
+ plt.ylabel("Scaled Temperature")
857
+ # plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
858
+ plt.tight_layout()
859
+ plt.show()
860
+
861
+ # ------------------------------------------------
862
+ # 8) Select ONE WEEK of data and flatten it into a single time-series
863
+ # ------------------------------------------------
864
+ # Let's say we pick the first 7 days in the pivot:
865
+ week_index = 10 # which chunk of 7 days to pick
866
+ days_to_plot = 7
867
+ chosen_dates = pivot_power.index[week_index:week_index + days_to_plot]
868
+
869
+ power_week = pivot_power.loc[chosen_dates, :].to_numpy().flatten()
870
+ temp_week = pivot_temp.loc[chosen_dates, :].to_numpy().flatten()
871
+ label_week = workday_label_2D[week_index:week_index + days_to_plot, :].flatten()
872
+
873
+ # The X-axis will be one point per hour (or half-hour, etc.) times 7 days
874
+ time_axis = np.arange(len(power_week))
875
+
876
+ # ------------------------------------------------
877
+ # 9) Plot one-week time series of Power, Temperature, Workday
878
+ # ------------------------------------------------
879
+ plt.figure(figsize=(12, 4))
880
+ plt.plot(time_axis, power_week, label='Power', linewidth=1)
881
+ plt.plot(time_axis, temp_week, label='Temperature', linewidth=1)
882
+ plt.plot(time_axis, label_week, label='Workday Label',
883
+ linewidth=2, linestyle='--')
884
+
885
+ print(list(power_week))
886
+
887
+ plt.title("One Week of Power, Temperature, and Workday Labels")
888
+ plt.xlabel("Hourly Points over 7 Days")
889
+ plt.ylabel("Scaled Value / Label")
890
+ plt.legend()
891
+ plt.grid(True)
892
+ plt.tight_layout()
893
+ plt.show()
894
+
895
+ return pivot_power, pivot_temp, workday_label_2D
896
+
897
+
898
+
899
+ def get_data_residential_weekly():
900
+ """
901
+ Residential power-usage data (2016-2020) → weekly slices.
902
+
903
+ Returns
904
+ -------
905
+ times : np.ndarray (dtype=object) – shape (n_weeks,)
906
+ each element is a 1-D array of datetime stamps
907
+ energy : np.ndarray, shape (n_weeks, points_per_day*7)
908
+ temp : np.ndarray, same shape
909
+ workday : np.ndarray, same shape, int {0,1}
910
+ season_feat : np.ndarray, same shape, int {0,1,2,3}
911
+ """
912
+
913
+ # ── paths ──────────────────────────────────────────────────────────────
914
+ p_load = Path("/Users/muhaoguo/Documents/study/Paper_Projects/PESGM/data/Kaggle_2/power_usage_2016_to_2020.csv")
915
+ p_weather = Path("/Users/muhaoguo/Documents/study/Paper_Projects/PESGM/data/Kaggle_2/weather_2016_2020_daily.csv")
916
+
917
+ # ── 1. read & basic merge (load = hourly, weather = daily) ───────────
918
+ df_load = pd.read_csv(p_load)
919
+ df_load["time"] = pd.to_datetime(df_load["StartDate"])
920
+ df_load["date"] = df_load["time"].dt.date
921
+ df_load.rename(columns={"Value (kWh)": "meter_reading"}, inplace=True)
922
+
923
+ df_weather = pd.read_csv(p_weather)
924
+ df_weather["date"] = pd.to_datetime(df_weather["Date"]).dt.date
925
+ df_weather.rename(columns={"Temp_avg": "air_temperature"}, inplace=True)
926
+
927
+ df = pd.merge(df_load[["time", "date", "meter_reading", "day_of_week"]],
928
+ df_weather[["date", "air_temperature"]],
929
+ on="date", how="left")
930
+
931
+ # ── 2. keep numeric & drop NaN ─────────────────────────────────────────
932
+ df["meter_reading"] = pd.to_numeric(df["meter_reading"], errors="coerce")
933
+ df["air_temperature"] = pd.to_numeric(df["air_temperature"], errors="coerce")
934
+ df.dropna(subset=["meter_reading", "air_temperature"], inplace=True)
935
+ df.sort_values("time", inplace=True)
936
+
937
+ # min-max normalise both variables globally
938
+ for c in ["meter_reading", "air_temperature"]:
939
+ v_min, v_max = df[c].min(), df[c].max()
940
+ df[c] = (df[c] - v_min) / (v_max - v_min)
941
+
942
+ # ── 3. ensure full-day rows & discover points_per_day ─────────────────
943
+ day_counts = df.groupby("date").size()
944
+ points_per_day = int(day_counts.mode().iloc[0]) # most common length
945
+ full_dates = day_counts[day_counts == points_per_day].index
946
+ df = df[df["date"].isin(full_dates)].copy()
947
+
948
+
949
+ # ── 4. helpers ─────────────────────────────────────────────────────────
950
+ def get_season(m): # 0=winter … 3=autumn
951
+ return {12:0,1:0,2:0,3:1,4:1,5:1,6:2,7:2,8:2,9:3,10:3,11:3}[m]
952
+
953
+ meas_cols = ["meter_reading", "air_temperature", "date", "time"]
954
+ grouped = df.groupby("date")[meas_cols]
955
+
956
+ # ── 5. daily arrays (guaranteed identical length) ─────────────────────
957
+ daily, d_labels, d_seasons = [], [], []
958
+ for d in sorted(grouped.groups.keys()):
959
+ g = grouped.get_group(d).sort_values("time")
960
+ arr = g[meas_cols].values
961
+ weekend = 1 if g["time"].dt.dayofweek.iloc[0] >= 5 else 0
962
+ season = get_season(g["time"].iloc[0].month)
963
+
964
+ daily.append(arr)
965
+ d_labels.append(np.full(points_per_day, weekend, dtype=int))
966
+ d_seasons.append(np.full(points_per_day, season, dtype=int))
967
+
968
+ # ── 6. build consecutive 7-day blocks starting at 00:00 ───────────────
969
+ n_full_weeks = len(daily) // 7
970
+ if n_full_weeks == 0:
971
+ return (np.array([]),) * 5
972
+
973
+ # sigma = max(1, points_per_day // 24) # ≈ 1-hour smoothing
974
+ energy, temp, times, workday, season_feat = [], [], [], [], []
975
+
976
+ for w in range(n_full_weeks):
977
+ sl = slice(w*7, (w+1)*7)
978
+ week_d, w_lbl, w_sea = daily[sl], d_labels[sl], d_seasons[sl]
979
+
980
+ e = np.asarray(np.concatenate([d[:,0] for d in week_d]), dtype=float)
981
+ t = np.asarray(np.concatenate([d[:,1] for d in week_d]), dtype=float)
982
+ ts = np.concatenate([d[:,3] for d in week_d])
983
+ wl = np.concatenate(w_lbl)
984
+ sf = np.concatenate(w_sea)
985
+
986
+ energy.append(gaussian_filter1d(e, sigma=1))
987
+ temp.append(gaussian_filter1d(t, sigma=1))
988
+ times.append(ts)
989
+ workday.append(wl)
990
+ season_feat.append(sf)
991
+
992
+ # plot_data(times, energy, temp, workday, season_feat)
993
+
994
+ return (np.array(times, dtype=object),
995
+ np.array(energy),
996
+ np.array(temp),
997
+ np.array(workday),
998
+ np.array(season_feat))
999
+
1000
+
1001
+
1002
+ def get_data_solar_weather_weekly():
1003
+ """
1004
+ Returns
1005
+ -------
1006
+ times : np.ndarray (dtype=object) shape (n_weeks,)
1007
+ energy : np.ndarray shape (n_weeks, points_per_day*7)
1008
+ temp : np.ndarray same shape
1009
+ workday : np.ndarray same shape, int {0,1}
1010
+ season_feat : np.ndarray same shape, int {0,1,2,3}
1011
+ """
1012
+
1013
+ # ── 1. read & basic cleaning ─────────────────────────────────────────
1014
+ p_csv = Path("/Users/muhaoguo/Documents/study/Paper_Projects/PESGM/data/solar_weather.csv")
1015
+ df = pd.read_csv(p_csv, parse_dates=["Time"])
1016
+
1017
+ # you sampled 1000:10000 in the draft – keep that if desired
1018
+ # df = df.iloc[1000:10000].copy()
1019
+ df = df.iloc[::4].copy()
1020
+
1021
+ # keep two numeric columns & drop NaN
1022
+ df = df[["Time", "Energy delta[Wh]", "temp"]].rename(
1023
+ columns={"Energy delta[Wh]": "meter_reading",
1024
+ "temp": "air_temperature"})
1025
+ df["meter_reading"] = pd.to_numeric(df["meter_reading"], errors="coerce")
1026
+ df["air_temperature"] = pd.to_numeric(df["air_temperature"], errors="coerce")
1027
+ df.dropna(inplace=True)
1028
+ df.sort_values("Time", inplace=True)
1029
+ # print(df)
1030
+
1031
+ # ── 2. global min-max normalisation ─────────────────────────────────
1032
+ for c in ["meter_reading", "air_temperature"]:
1033
+ vmin, vmax = df[c].min(), df[c].max()
1034
+ df[c] = (df[c] - vmin) / (vmax - vmin)
1035
+
1036
+ # ── 3. identify full days / sample rate ─────────────────────────────
1037
+ df["date"] = df["Time"].dt.date
1038
+ day_counts = df.groupby("date").size()
1039
+ pts_per_day = int(day_counts.mode().iloc[0]) # modal length
1040
+ full_dates = day_counts[day_counts == pts_per_day].index
1041
+ df = df[df["date"].isin(full_dates)].copy()
1042
+
1043
+ # ── 4. helpers ──────────────────────────────────────────────────────
1044
+ def get_season(m): # 0=winter,1=spring,2=summer,3=autumn
1045
+ return {12:0,1:0,2:0,3:1,4:1,5:1,6:2,7:2,8:2,9:3,10:3,11:3}[m]
1046
+
1047
+ meas_cols = ["meter_reading", "air_temperature", "date", "Time"]
1048
+ grouped = df.groupby("date")[meas_cols]
1049
+
1050
+ daily, d_wd, d_sea = [], [], []
1051
+ for d in sorted(grouped.groups.keys()):
1052
+ g = grouped.get_group(d).sort_values("Time")
1053
+ arr = g[meas_cols].values
1054
+
1055
+ wd_flag = 1 if g["Time"].dt.dayofweek.iloc[0] >= 5 else 0
1056
+ season = get_season(g["Time"].iloc[0].month)
1057
+
1058
+ daily.append(arr)
1059
+ d_wd.append(np.full(pts_per_day, wd_flag, dtype=int))
1060
+ d_sea.append(np.full(pts_per_day, season, dtype=int))
1061
+
1062
+ # ── 5. consecutive 7-day blocks, starting at 00:00 ──────────────────
1063
+ n_full_weeks = len(daily) // 7
1064
+ if n_full_weeks == 0:
1065
+ return (np.array([]),)*5
1066
+
1067
+ sigma = max(1, pts_per_day // 24) # ≈ one-hour smoothing
1068
+ energy, temp, times, workday, season_feat = [], [], [], [], []
1069
+
1070
+ for w in range(n_full_weeks):
1071
+ sl = slice(w*7, (w+1)*7)
1072
+ wk_d, wk_wd, wk_sea = daily[sl], d_wd[sl], d_sea[sl]
1073
+
1074
+ e = np.asarray(np.concatenate([d[:,0] for d in wk_d]), dtype=float)
1075
+ t = np.asarray(np.concatenate([d[:,1] for d in wk_d]), dtype=float)
1076
+ ts = np.concatenate([d[:,3] for d in wk_d])
1077
+ wl = np.concatenate(wk_wd)
1078
+ sf = np.concatenate(wk_sea)
1079
+
1080
+ energy.append(gaussian_filter1d(e, sigma=sigma))
1081
+ temp.append(gaussian_filter1d(t, sigma=sigma))
1082
+ times.append(ts)
1083
+ workday.append(wl)
1084
+ season_feat.append(sf)
1085
+
1086
+ # plot_data(times, energy, temp, workday, season_feat)
1087
+
1088
+ return (np.array(times, dtype=object),
1089
+ np.array(energy),
1090
+ np.array(temp),
1091
+ np.array(workday),
1092
+ np.array(season_feat))
1093
+
1094
+
1095
+ if __name__ == "__main__":
1096
+ times, energy, temp, workday, season_feat = get_data_building_weather_weekly()
1097
+ print(times.shape, energy.shape, temp.shape, workday.shape, season_feat.shape)
1098
+
1099
+ times, energy, temp, workday, season_feat = get_data_spanish_weekly()
1100
+ print(times.shape, energy.shape, temp.shape, workday.shape, season_feat.shape)
1101
+
1102
+ times, energy, temp, workday, season_feat = get_data_power_consumption_weekly()
1103
+ print(times.shape, energy.shape, temp.shape, workday.shape, season_feat.shape)
1104
+
1105
+ times, energy, temp, workday, season_feat = get_data_residential_weekly()
1106
+ print(times.shape, energy.shape, temp.shape, workday.shape, season_feat.shape)
1107
+
1108
+ times, energy, temp, workday, season_feat = get_data_solar_weather_weekly()
1109
+ print(times.shape, energy.shape, temp.shape, workday.shape, season_feat.shape)
1110
+
1111
+
1112
+
1113
+
main_variational.py ADDED
@@ -0,0 +1,310 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ from scipy.ndimage import gaussian_filter1d
4
+ from sklearn.preprocessing import MinMaxScaler
5
+ import torch
6
+ import torch.nn as nn
7
+ from torch.utils.data import Dataset, DataLoader
8
+ import random
9
+ from data_utils import *
10
+ from model import *
11
+ import numpy as np, random, torch, torch.nn as nn
12
+ from torch.utils.data import DataLoader, TensorDataset
13
+ import matplotlib.pyplot as plt
14
+ import torch
15
+ import matplotlib.pyplot as plt
16
+ from torch.distributions.normal import Normal
17
+ import math
18
+
19
+ # ---------------------------------------------------------------------------
20
+ # Seed
21
+ # ---------------------------------------------------------------------------
22
+ def set_seed(seed: int = 42):
23
+ random.seed(seed)
24
+ np.random.seed(seed)
25
+ torch.manual_seed(seed)
26
+ torch.cuda.manual_seed_all(seed)
27
+ torch.backends.cudnn.deterministic = True
28
+ torch.backends.cudnn.benchmark = False
29
+
30
+
31
+
32
+ # ---------------------------------------------------------------------------
33
+ # Train
34
+ # ---------------------------------------------------------------------------
35
+ def train_model(model, train_loader, epochs, lr, device, save_path="best_model.pt"):
36
+ loss_fn = nn.MSELoss()
37
+ optimizer = torch.optim.Adam(model.parameters(), lr=lr)
38
+
39
+ best_train_loss = float("inf")
40
+ best_epoch = -1
41
+
42
+ for ep in range(1, epochs + 1):
43
+ model.train()
44
+ running_train_loss = 0.0
45
+
46
+ for batch in train_loader:
47
+ (enc_l, enc_t, enc_w, enc_s,
48
+ dec_l, dec_t, dec_w, dec_s,
49
+ tgt) = [t.to(device) for t in batch]
50
+
51
+ optimizer.zero_grad()
52
+
53
+ mu_preds, logvar_preds, mu_z, logvar_z = model(enc_l, enc_t, enc_w, enc_s,
54
+ dec_l, dec_t, dec_w, dec_s,
55
+ epoch=ep,
56
+ top_k=top_k, warmup_epochs=10)
57
+
58
+ nll = gaussian_nll_loss(mu_preds, logvar_preds, tgt)
59
+ kl = kl_loss(mu_z, logvar_z)
60
+
61
+ loss = nll + 0.01 * kl
62
+
63
+ # reconstruction_loss = nn.functional.mse_loss(preds, tgt, reduction='mean')
64
+ # kl_loss = -0.5 * torch.mean(1 + logvar - mu.pow(2) - logvar.exp())
65
+ # loss = reconstruction_loss + kl_weight * kl_loss # KL weight is tunable
66
+
67
+ loss.backward()
68
+ optimizer.step()
69
+
70
+ running_train_loss += loss.item() * enc_l.size(0)
71
+
72
+ avg_train_loss = running_train_loss / len(train_loader.dataset)
73
+
74
+ if avg_train_loss < best_train_loss:
75
+ best_train_loss = avg_train_loss
76
+ best_epoch = ep
77
+ torch.save(model.state_dict(), save_path)
78
+ print(f"✅ Saved best model at epoch {ep} with loss {best_train_loss:.6f}")
79
+
80
+ if ep == 1 or ep % 5 == 0 or ep == epochs:
81
+ print(f"Epoch {ep:3d}/{epochs} | Train MSE: {avg_train_loss:.6f} | Best MSE: {best_train_loss:.6f} (epoch {best_epoch})")
82
+
83
+ print(f"\n🏁 Training completed. Best model saved from epoch {best_epoch} with MSE: {best_train_loss:.6f}")
84
+ return model
85
+
86
+
87
+
88
+ def crps_gaussian(mu, logvar, target):
89
+ """
90
+ Compute CRPS for Gaussian predictive distribution.
91
+ Args:
92
+ mu: [B, T] predicted mean
93
+ logvar: [B, T] predicted log-variance
94
+ target: [B, T] true target values
95
+ Returns:
96
+ crps: scalar (mean CRPS over all points)
97
+ """
98
+ std = (0.5 * logvar).exp() # [B, T]
99
+ z = (target - mu) / std # [B, T]
100
+
101
+ normal = Normal(torch.zeros_like(z), torch.ones_like(z))
102
+ phi = torch.exp(normal.log_prob(z)) # PDF φ(z)
103
+ Phi = normal.cdf(z) # CDF Φ(z)
104
+
105
+ crps = std * (z * (2 * Phi - 1) + 2 * phi - 1 / math.sqrt(math.pi))
106
+ return crps.mean()
107
+
108
+
109
+ @torch.no_grad()
110
+ def evaluate_model(model, test_loader, loss_fn, device,
111
+ model_path="model.pt", reduce="first", visualize=True):
112
+ print("Loading model from:", model_path)
113
+ model.load_state_dict(torch.load(model_path, map_location=device))
114
+ model.to(device)
115
+ model.eval()
116
+
117
+ all_preds = []
118
+ all_targets = []
119
+ running_mse = 0.0
120
+ running_nll = 0.0
121
+ running_crps = 0.0
122
+
123
+ for batch in test_loader:
124
+ (enc_l, enc_t, enc_w, enc_s,
125
+ dec_l, dec_t, dec_w, dec_s,
126
+ tgt) = [t.to(device) for t in batch]
127
+
128
+ B = enc_l.size(0)
129
+
130
+ mu_preds, logvar_preds, _, _ = model(enc_l, enc_t, enc_w, enc_s,
131
+ dec_l, dec_t, dec_w, dec_s)
132
+ mu_preds = mu_preds.squeeze(-1) # [B, L+1, output_len]
133
+ logvar_preds = logvar_preds.squeeze(-1) # [B, L+1, output_len]
134
+ tgt = tgt.squeeze(-1) # [B, L+1, output_len]
135
+
136
+ if reduce == "mean":
137
+ for b in range(B):
138
+ pred_avg = reconstruct_sequence(mu_preds[b]) # [L+output_len]
139
+ tgt_avg = reconstruct_sequence(tgt[b])
140
+ all_preds.append(pred_avg.cpu())
141
+ all_targets.append(tgt_avg.cpu())
142
+ running_mse += loss_fn(pred_avg, tgt_avg).item()
143
+
144
+ elif reduce == "first":
145
+ mu_first = mu_preds[:, :, 0] # [B, L+1]
146
+ logvar_first = logvar_preds[:, :, 0] # [B, L+1]
147
+ tgt_first = tgt[:, :, 0] # [B, L+1]
148
+
149
+ all_preds.extend(mu_first.cpu())
150
+ all_targets.extend(tgt_first.cpu())
151
+ running_mse += loss_fn(mu_first, tgt_first).item() * B
152
+
153
+ # NLL
154
+ nll = 0.5 * (
155
+ logvar_first +
156
+ torch.log(torch.tensor(2 * np.pi, device=logvar_first.device)) +
157
+ (tgt_first - mu_first) ** 2 / logvar_first.exp()
158
+ ) # [B, L+1]
159
+ running_nll += nll.sum().item()
160
+
161
+ # CRPS
162
+ crps = crps_gaussian(mu_first, logvar_first, tgt_first)
163
+ running_crps += crps.item() * B
164
+
165
+ # Visualization
166
+ if visualize:
167
+ for i in range(min(5, mu_first.size(0))):
168
+ std_pred = logvar_first[i].exp().sqrt().cpu()
169
+ plt.figure(figsize=(4, 2))
170
+ plt.plot(tgt_first[i].cpu(), label='True', linestyle='--', color='red')
171
+ plt.plot(mu_first[i].cpu(), label='Mean Predicted', alpha=0.6, color='blue',)
172
+ plt.fill_between(np.arange(mu_first.size(1)),
173
+ mu_first[i].cpu() - std_pred,
174
+ mu_first[i].cpu() + std_pred,
175
+ color='blue', alpha=0.1, label='±1 Std Predicted')
176
+ # plt.title(f"Prediction + Uncertainty (Sample {i})")
177
+ # plt.legend()
178
+ plt.ylim(0, 1)
179
+ plt.yticks([0, 0.5, 1], fontsize=14)
180
+ plt.xticks(fontsize=14)
181
+ plt.tight_layout()
182
+ plt.savefig(f"./result/{data_name}_{model_name}_sample_{i}.pdf")
183
+
184
+ # handles, labels = plt.gca().get_legend_handles_labels()
185
+ # plt.legend(handles, labels,
186
+ # ncol=len(labels), # one long row
187
+ # loc='upper center', # put it where you like
188
+ # bbox_to_anchor=(0.5, 1.05),# and nudge it above the axes
189
+ # framealpha=1,
190
+ # fontsize= 14
191
+ # )
192
+ plt.show()
193
+
194
+ # Global visualization
195
+ plt.figure(figsize=(12, 6))
196
+ for i in range(mu_first.size(0)):
197
+ std_pred = logvar_first[i].exp().sqrt().cpu()
198
+ plt.plot(tgt_first[i].cpu(), color='gray', linestyle='--', linewidth=0.8, alpha=0.5)
199
+ plt.plot(mu_first[i].cpu(), linewidth=2.0, label='Mean Pred' if i == 0 else None)
200
+ plt.fill_between(np.arange(mu_first.size(1)),
201
+ mu_first[i].cpu() - std_pred,
202
+ mu_first[i].cpu() + std_pred,
203
+ alpha=0.2, color='red')
204
+ plt.title("All Forecasts: Mean + Predicted Variance")
205
+ plt.xlabel("Time step")
206
+ plt.ylabel("Forecasted value")
207
+ plt.legend(loc='upper right')
208
+ plt.tight_layout()
209
+ visualize = False
210
+ # plt.show()
211
+ else:
212
+ raise ValueError("reduce must be 'mean' or 'first'")
213
+
214
+ test_mse = running_mse / len(test_loader.dataset)
215
+ test_nll = running_nll / (len(test_loader.dataset) * mu_first.size(1)) if reduce == "first" else None
216
+ test_crps = running_crps / len(test_loader.dataset) if reduce == "first" else None
217
+
218
+ print(f"🧪 Test MSE: {test_mse:.6f}")
219
+ # print(f"🧪 Test NLL : {test_nll:.6f}")
220
+ print(f"🧪 Test CRPS: {test_crps:.6f}")
221
+
222
+ return test_mse, test_nll, test_crps
223
+
224
+
225
+ # ---------------------------------------------------------------------------
226
+ # Main script
227
+ # ---------------------------------------------------------------------------
228
+ if __name__ == "__main__":
229
+ seed = 42
230
+ set_seed(seed)
231
+ batch_size = 16
232
+ epochs = 300
233
+ lr = 1e-3
234
+ kl_weight = 0.01
235
+ xprime_dim = 40
236
+ hidden_dim = 64
237
+ latent_dim = 32
238
+ num_layers = 4
239
+ output_len = 3 # make sure this matches process_seq2seq_data
240
+ num_experts = 3 # temp, workday, season
241
+ top_k = 2
242
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
243
+
244
+ data_name = "Solar" # Spanish Consumption Residential Solar
245
+ model_name = "M2OE2"
246
+ model_path = f"{data_name}_{model_name}_best_model.pt"
247
+ print(f"Using device: {device}")
248
+
249
+ # (A) Load & prepare data ------------------------------------------------
250
+ if data_name == "Building":
251
+ times, load, temp, workday, season = get_data_building_weather_weekly()
252
+ elif data_name == "Spanish":
253
+ times, load, temp, workday, season = get_data_spanish_weekly()
254
+ elif data_name == "Consumption":
255
+ times, load, temp, workday, season = get_data_power_consumption_weekly()
256
+ elif data_name == "Residential":
257
+ times, load, temp, workday, season = get_data_residential_weekly()
258
+ elif data_name == "Solar":
259
+ times, load, temp, workday, season= get_data_solar_weather_weekly()
260
+
261
+ input_dim = 1
262
+ output_dim = 1 # predict one-dimensional load
263
+
264
+
265
+ feature_dict = dict(load = load,
266
+ temp = temp,
267
+ workday = workday,
268
+ season = season)
269
+
270
+ train_data, test_data, _ = process_seq2seq_data(
271
+ feature_dict = feature_dict,
272
+ train_ratio = 0.7,
273
+ output_len = output_len,
274
+ device = device)
275
+
276
+ train_loader = make_loader(train_data, batch_size, shuffle=True)
277
+ test_loader = make_loader(test_data, batch_size, shuffle=False)
278
+
279
+ model = VariationalSeq2Seq_meta(
280
+ xprime_dim=xprime_dim,
281
+ input_dim=input_dim,
282
+ hidden_size=hidden_dim,
283
+ latent_size=latent_dim,
284
+ output_len=output_len,
285
+ output_dim=output_dim,
286
+ num_layers=num_layers,
287
+ dropout=0.1,
288
+ num_experts=num_experts
289
+ ).to(device)
290
+
291
+ import os
292
+ if not os.path.isfile(model_path):
293
+ print(f"[x] Not Found '{model_path}', training.")
294
+ train_model(model, train_loader, epochs=epochs, lr=lr, device=device, save_path=model_path)
295
+
296
+ # Re-initialize the model with same architecture
297
+ model = VariationalSeq2Seq_meta(
298
+ xprime_dim=xprime_dim,
299
+ input_dim=input_dim,
300
+ hidden_size=hidden_dim,
301
+ latent_size=latent_dim,
302
+ output_len=output_len,
303
+ output_dim=output_dim,
304
+ num_layers=num_layers,
305
+ dropout=0.1,
306
+ num_experts=num_experts
307
+ ).to(device)
308
+
309
+ # Then evaluate
310
+ evaluate_model(model, test_loader, nn.MSELoss(), device, model_path=model_path)
model.py ADDED
@@ -0,0 +1,514 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import numpy as np
4
+
5
+ # ---------------- Meta Components ----------------
6
+ class MetaNet(nn.Module):
7
+ def __init__(self, input_dim, xprime_dim):
8
+ super().__init__()
9
+ self.layer1 = nn.Linear(1, input_dim * xprime_dim)
10
+ self.layer2 = nn.Linear(input_dim * xprime_dim, input_dim * xprime_dim)
11
+ self.input_dim = input_dim
12
+ self.xprime_dim = xprime_dim
13
+
14
+ def forward(self, x_feat): # x_feat: [B, 1]
15
+ B = x_feat.size(0)
16
+ out = torch.tanh(self.layer1(x_feat)) # [B, 32]
17
+ out = torch.tanh(self.layer2(out)) # [B, input_dim * xprime_dim]
18
+ return out.view(B, self.input_dim, self.xprime_dim) # [B, input_dim, xprime_dim]
19
+
20
+
21
+
22
+ class GatingNet(nn.Module):
23
+ def __init__(self, hidden_size, num_experts=3):
24
+ super().__init__()
25
+ self.layer1 = nn.Linear(hidden_size, hidden_size)
26
+ self.layer2 = nn.Linear(hidden_size, num_experts)
27
+
28
+ def forward(self, h, epoch=None, top_k=None, warmup_epochs=0):
29
+ logits = self.layer2(torch.tanh(self.layer1(h))) # [B, num_experts]
30
+
31
+ if (epoch is None) or (top_k is None) or (epoch < warmup_epochs):
32
+ return torch.softmax(logits, dim=-1)
33
+
34
+ topk_vals, topk_idx = torch.topk(logits, k=top_k, dim=-1)
35
+ mask = torch.zeros_like(logits).scatter(1, topk_idx, 1.0)
36
+ masked_logits = logits.masked_fill(mask == 0, float('-inf'))
37
+ return torch.softmax(masked_logits, dim=-1)
38
+
39
+
40
+ class MetaTransformBlock(nn.Module):
41
+ def __init__(self, xprime_dim, num_experts=3, input_dim=1, hidden_size=64):
42
+ super().__init__()
43
+ self.meta_temp = MetaNet(input_dim, xprime_dim)
44
+ self.meta_work = MetaNet(input_dim, xprime_dim)
45
+ self.meta_season = MetaNet(input_dim, xprime_dim)
46
+ self.gating = GatingNet(hidden_size, num_experts) # Use hidden_size here
47
+ self.ln = nn.LayerNorm([input_dim, xprime_dim])
48
+ self.theta0 = nn.Parameter(torch.zeros(1, input_dim, xprime_dim))
49
+
50
+ def forward(self, h_prev_rnn, x_l, x_t, x_w, x_s, epoch=None, top_k=None, warmup_epochs=0):
51
+ w_temp = self.ln(self.meta_temp(x_t)) # [B, input_dim, xprime_dim]
52
+ w_work = self.ln(self.meta_work(x_w)) # [B, input_dim, xprime_dim]
53
+ w_seas = self.ln(self.meta_season(x_s)) # [B, input_dim, xprime_dim]
54
+
55
+ gates = self.gating(h_prev_rnn, epoch=epoch, top_k=top_k, warmup_epochs=warmup_epochs) # [B, num_experts]
56
+ W_experts = torch.stack([w_temp, w_work, w_seas], dim=1) # [B, num_experts, input_dim, xprime_dim]
57
+ gates_expanded = gates.view(gates.size(0), gates.size(1), 1, 1) # [B, num_experts, 1, 1]
58
+ theta_dynamic = (W_experts * gates_expanded).sum(dim=1) # [B, input_dim, xprime_dim]
59
+ theta = theta_dynamic + self.theta0 # [B, input_dim, xprime_dim]
60
+
61
+ x_prime = torch.bmm(x_l.unsqueeze(1), theta).squeeze(1) # [B, xprime_dim]
62
+ return x_prime, theta
63
+
64
+ # ---------------- Encoder ----------------
65
+ class Encoder_meta(nn.Module):
66
+ def __init__(self, xprime_dim, hidden_size, num_layers=1, dropout=0.1):
67
+ super().__init__()
68
+ self.hidden_size = hidden_size
69
+ self.num_layers = num_layers
70
+ self.rnn = nn.GRU(xprime_dim, hidden_size, num_layers,
71
+ batch_first=True,
72
+ dropout=dropout if num_layers > 1 else 0)
73
+
74
+ def forward(self, x_l_seq, x_t_seq, x_w_seq, x_s_seq,
75
+ transform_block, h_init=None, epoch=None, top_k=None, warmup_epochs=0):
76
+ B, T, _ = x_l_seq.shape
77
+ h_rnn = torch.zeros(self.num_layers, B, self.hidden_size, device=x_l_seq.device) if h_init is None else h_init
78
+
79
+ for t in range(T):
80
+ h_for_meta = h_rnn[-1]
81
+ x_prime, _ = transform_block(h_for_meta,
82
+ x_l_seq[:, t], x_t_seq[:, t],
83
+ x_w_seq[:, t], x_s_seq[:, t],
84
+ epoch=epoch, top_k=top_k, warmup_epochs=warmup_epochs)
85
+ x_prime = x_prime.unsqueeze(1)
86
+ _, h_rnn = self.rnn(x_prime, h_rnn)
87
+
88
+ return h_rnn # [num_layers, B, hidden_size]
89
+
90
+
91
+ # ---------------- Decoder ----------------
92
+ class Decoder_meta(nn.Module):
93
+ def __init__(self, xprime_dim, latent_size, output_len, output_dim=1,
94
+ num_layers=1, dropout=0.1, hidden_size=None):
95
+ super().__init__()
96
+ self.latent_size = latent_size
97
+ self.output_len = output_len
98
+ self.output_dim = output_dim
99
+ self.num_layers = num_layers
100
+
101
+ self.rnn = nn.GRU(xprime_dim, latent_size, num_layers,
102
+ batch_first=True,
103
+ dropout=dropout if num_layers > 1 else 0)
104
+
105
+ self.head = nn.Linear(latent_size, output_len * output_dim)
106
+
107
+ # Layer-wise projection from encoder hidden_size → decoder latent_size
108
+ assert hidden_size is not None, "You must provide hidden_size for projection."
109
+ self.project = nn.ModuleList([
110
+ nn.Linear(hidden_size, latent_size) for _ in range(num_layers)
111
+ ])
112
+
113
+ def forward(self, x_l_seq, x_t_seq, x_w_seq, x_s_seq,
114
+ h_init, transform_block,
115
+ epoch=None, top_k=None, warmup_epochs=0):
116
+ B, L, _ = x_l_seq.shape
117
+
118
+ # Project each layer of encoder hidden state to latent size
119
+ h_rnn = torch.stack([
120
+ self.project[i](h_init[i]) for i in range(self.num_layers)
121
+ ], dim=0) # [num_layers, B, latent_size]
122
+
123
+ preds = []
124
+
125
+ # Step 0
126
+ h_last = h_rnn[-1] # [B, latent_size]
127
+ pred_0 = self.head(h_last).view(B, self.output_len, self.output_dim)
128
+ preds.append(pred_0.unsqueeze(1)) # [B, 1, output_len, output_dim]
129
+
130
+ # Steps 1 to L
131
+ for t in range(L):
132
+ h_for_meta = h_rnn[-1]
133
+ x_prime, _ = transform_block(h_for_meta,
134
+ x_l_seq[:, t], x_t_seq[:, t],
135
+ x_w_seq[:, t], x_s_seq[:, t],
136
+ epoch=epoch, top_k=top_k, warmup_epochs=warmup_epochs)
137
+ x_prime = x_prime.unsqueeze(1)
138
+ out_t, h_rnn = self.rnn(x_prime, h_rnn)
139
+ pred_t = self.head(out_t.squeeze(1)).view(B, self.output_len, self.output_dim)
140
+ preds.append(pred_t.unsqueeze(1))
141
+
142
+ preds = torch.cat(preds, dim=1) # [B, L+1, output_len, output_dim]
143
+ return preds
144
+
145
+
146
+ # ---------------- Full Seq2Seq Model ----------------
147
+ class Seq2Seq_meta(nn.Module):
148
+ def __init__(self, xprime_dim, input_dim, hidden_size, latent_size,
149
+ output_len, output_dim=1, num_layers=1, dropout=0.1, num_experts=3):
150
+ super().__init__()
151
+
152
+ self.transform_enc = MetaTransformBlock(
153
+ xprime_dim=xprime_dim,
154
+ num_experts=num_experts,
155
+ input_dim=input_dim,
156
+ hidden_size=hidden_size # encoder hidden_size
157
+ )
158
+
159
+ self.transform_dec = MetaTransformBlock(
160
+ xprime_dim=xprime_dim,
161
+ num_experts=num_experts,
162
+ input_dim=input_dim,
163
+ hidden_size=latent_size # decoder latent_size
164
+ )
165
+
166
+ self.encoder = Encoder_meta(
167
+ xprime_dim=xprime_dim,
168
+ hidden_size=hidden_size,
169
+ num_layers=num_layers,
170
+ dropout=dropout)
171
+
172
+ self.decoder = Decoder_meta(
173
+ xprime_dim=xprime_dim,
174
+ latent_size=latent_size,
175
+ output_len=output_len,
176
+ output_dim=output_dim,
177
+ num_layers=num_layers,
178
+ dropout=dropout,
179
+ hidden_size=hidden_size # for projection from encoder hidden
180
+ )
181
+
182
+ def forward(self,
183
+ enc_l, enc_t, enc_w, enc_s,
184
+ dec_l, dec_t, dec_w, dec_s,
185
+ epoch=None, top_k=None, warmup_epochs=0):
186
+
187
+ h_enc = self.encoder(enc_l, enc_t, enc_w, enc_s,
188
+ transform_block=self.transform_enc,
189
+ epoch=epoch, top_k=top_k, warmup_epochs=warmup_epochs)
190
+
191
+ preds = self.decoder(dec_l, dec_t, dec_w, dec_s,
192
+ h_init=h_enc,
193
+ transform_block=self.transform_dec,
194
+ epoch=epoch, top_k=top_k, warmup_epochs=warmup_epochs)
195
+ return preds
196
+
197
+
198
+
199
+ # ---------------- Encoder ----------------
200
+ class VariationalEncoder_meta(nn.Module):
201
+ def __init__(self, xprime_dim, hidden_size, latent_size, num_layers=1, dropout=0.1):
202
+ super().__init__()
203
+ self.hidden_size = hidden_size
204
+ self.latent_size = latent_size
205
+ self.num_layers = num_layers
206
+
207
+ self.rnn = nn.GRU(xprime_dim, hidden_size, num_layers,
208
+ batch_first=True,
209
+ dropout=dropout if num_layers > 1 else 0)
210
+
211
+ self.mu_layer = nn.Linear(hidden_size, latent_size)
212
+ self.logvar_layer = nn.Linear(hidden_size, latent_size)
213
+
214
+ def forward(self, x_l_seq, x_t_seq, x_w_seq, x_s_seq,
215
+ transform_block, h_init=None, epoch=None, top_k=None, warmup_epochs=0):
216
+
217
+ B, T, _ = x_l_seq.shape
218
+ h_rnn = torch.zeros(self.num_layers, B, self.hidden_size, device=x_l_seq.device) if h_init is None else h_init
219
+
220
+ for t in range(T):
221
+ h_for_meta = h_rnn[-1]
222
+ x_prime, _ = transform_block(h_for_meta,
223
+ x_l_seq[:, t], x_t_seq[:, t],
224
+ x_w_seq[:, t], x_s_seq[:, t],
225
+ epoch=epoch, top_k=top_k, warmup_epochs=warmup_epochs)
226
+ x_prime = x_prime.unsqueeze(1)
227
+ _, h_rnn = self.rnn(x_prime, h_rnn)
228
+
229
+ h_last = h_rnn[-1] # [B, hidden_size]
230
+ mu = self.mu_layer(h_last)
231
+ logvar = self.logvar_layer(h_last)
232
+
233
+ return mu, logvar
234
+
235
+
236
+
237
+ class VariationalDecoder_meta_predvar(nn.Module):
238
+ def __init__(self, xprime_dim, latent_size, output_len, output_dim=1,
239
+ num_layers=1, dropout=0.1):
240
+ super().__init__()
241
+ self.latent_size = latent_size
242
+ self.output_len = output_len
243
+ self.output_dim = output_dim
244
+ self.num_layers = num_layers
245
+
246
+ self.rnn = nn.GRU(xprime_dim, latent_size, num_layers,
247
+ batch_first=True,
248
+ dropout=dropout if num_layers > 1 else 0)
249
+
250
+ # Separate heads for mean and log-variance
251
+ self.head_mu = nn.Linear(latent_size, output_len * output_dim)
252
+ self.head_logvar = nn.Linear(latent_size, output_len * output_dim)
253
+
254
+ def forward(self, x_l_seq, x_t_seq, x_w_seq, x_s_seq,
255
+ z_latent, transform_block,
256
+ epoch=None, top_k=None, warmup_epochs=0):
257
+ B, L, _ = x_l_seq.shape
258
+
259
+ h_rnn = z_latent.unsqueeze(0).repeat(self.num_layers, 1, 1) # [num_layers, B, latent_size]
260
+
261
+ mu_preds = []
262
+ logvar_preds = []
263
+
264
+ # Step 0
265
+ h_last = h_rnn[-1]
266
+ mu_0 = self.head_mu(h_last).view(B, self.output_len, self.output_dim)
267
+ logvar_0 = self.head_logvar(h_last).view(B, self.output_len, self.output_dim)
268
+ mu_preds.append(mu_0.unsqueeze(1)) # [B, 1, output_len, output_dim]
269
+ logvar_preds.append(logvar_0.unsqueeze(1)) # same shape
270
+
271
+ # Steps 1 to L
272
+ for t in range(L):
273
+ h_for_meta = h_rnn[-1]
274
+ x_prime, _ = transform_block(h_for_meta,
275
+ x_l_seq[:, t], x_t_seq[:, t],
276
+ x_w_seq[:, t], x_s_seq[:, t],
277
+ epoch=epoch, top_k=top_k, warmup_epochs=warmup_epochs)
278
+ x_prime = x_prime.unsqueeze(1)
279
+ out_t, h_rnn = self.rnn(x_prime, h_rnn)
280
+
281
+ mu_t = self.head_mu(out_t.squeeze(1)).view(B, self.output_len, self.output_dim)
282
+ logvar_t = self.head_logvar(out_t.squeeze(1)).view(B, self.output_len, self.output_dim)
283
+
284
+ mu_preds.append(mu_t.unsqueeze(1))
285
+ logvar_preds.append(logvar_t.unsqueeze(1))
286
+
287
+ # Stack across time
288
+ mu_preds = torch.cat(mu_preds, dim=1) # [B, L+1, output_len, output_dim]
289
+ logvar_preds = torch.cat(logvar_preds, dim=1) # same shape
290
+
291
+ return mu_preds, logvar_preds
292
+
293
+
294
+ # ---------------- Full Seq2Seq Model ----------------
295
+ class VariationalSeq2Seq_meta(nn.Module):
296
+ def __init__(self, xprime_dim, input_dim, hidden_size, latent_size,
297
+ output_len, output_dim=1, num_layers=1, dropout=0.1, num_experts=3):
298
+ super().__init__()
299
+
300
+ self.transform_enc = MetaTransformBlock(
301
+ xprime_dim=xprime_dim,
302
+ num_experts=num_experts,
303
+ input_dim=input_dim,
304
+ hidden_size=hidden_size # encoder hidden size
305
+ )
306
+
307
+ self.transform_dec = MetaTransformBlock(
308
+ xprime_dim=xprime_dim,
309
+ num_experts=num_experts,
310
+ input_dim=input_dim,
311
+ hidden_size=latent_size # decoder latent size
312
+ )
313
+
314
+ self.encoder = VariationalEncoder_meta(
315
+ xprime_dim=xprime_dim,
316
+ hidden_size=hidden_size,
317
+ latent_size=latent_size,
318
+ num_layers=num_layers,
319
+ dropout=dropout
320
+ )
321
+
322
+ # self.decoder = VariationalDecoder_meta_fixvar(
323
+ # xprime_dim=xprime_dim,
324
+ # latent_size=latent_size,
325
+ # output_len=output_len,
326
+ # output_dim=output_dim,
327
+ # num_layers=num_layers,
328
+ # dropout=dropout
329
+ # )
330
+
331
+ self.decoder = VariationalDecoder_meta_predvar(
332
+ xprime_dim=xprime_dim,
333
+ latent_size=latent_size,
334
+ output_len=output_len,
335
+ output_dim=output_dim,
336
+ num_layers=num_layers,
337
+ dropout=dropout
338
+ )
339
+
340
+ def reparameterize(self, mu, logvar):
341
+ std = torch.exp(0.5 * logvar)
342
+ eps = torch.randn_like(std)
343
+ return mu + eps * std
344
+
345
+ def forward(self,
346
+ enc_l, enc_t, enc_w, enc_s,
347
+ dec_l, dec_t, dec_w, dec_s,
348
+ epoch=None, top_k=None, warmup_epochs=0):
349
+
350
+ mu, logvar = self.encoder(enc_l, enc_t, enc_w, enc_s,
351
+ transform_block=self.transform_enc,
352
+ epoch=epoch, top_k=top_k, warmup_epochs=warmup_epochs)
353
+
354
+ z = self.reparameterize(mu, logvar) # [B, latent_size]
355
+
356
+ mu_preds, logvar_preds = self.decoder(dec_l, dec_t, dec_w, dec_s,
357
+ z_latent=z,
358
+ transform_block=self.transform_dec,
359
+ epoch=epoch, top_k=top_k, warmup_epochs=warmup_epochs)
360
+
361
+ return mu_preds, logvar_preds, mu, logvar
362
+
363
+
364
+
365
+
366
+
367
+
368
+ # # ---------------- Decoder v1: fixed variance ----------------
369
+ # class VariationalDecoder_meta_fixvar(nn.Module):
370
+ # def __init__(self, xprime_dim, latent_size, output_len, output_dim=1,
371
+ # num_layers=1, dropout=0.1, fixed_var_value=0.01):
372
+ # super().__init__()
373
+ # self.latent_size = latent_size
374
+ # self.output_len = output_len
375
+ # self.output_dim = output_dim
376
+ # self.num_layers = num_layers
377
+ #
378
+ # self.rnn = nn.GRU(xprime_dim, latent_size, num_layers,
379
+ # batch_first=True,
380
+ # dropout=dropout if num_layers > 1 else 0)
381
+ #
382
+ # self.head = nn.Linear(latent_size, output_len * output_dim)
383
+ #
384
+ # # Fixed log-variance (scalar)
385
+ # self.fixed_logvar = torch.tensor(np.log(fixed_var_value), dtype=torch.float32)
386
+ #
387
+ # def forward(self, x_l_seq, x_t_seq, x_w_seq, x_s_seq,
388
+ # z_latent, transform_block,
389
+ # epoch=None, top_k=None, warmup_epochs=0):
390
+ # B, L, _ = x_l_seq.shape
391
+ #
392
+ # h_rnn = z_latent.unsqueeze(0).repeat(self.num_layers, 1, 1) # [num_layers, B, latent_size]
393
+ #
394
+ # mu_preds = []
395
+ #
396
+ # # Step 0
397
+ # h_last = h_rnn[-1]
398
+ # mu_0 = self.head(h_last).view(B, self.output_len, self.output_dim)
399
+ # mu_preds.append(mu_0.unsqueeze(1)) # [B, 1, output_len, output_dim]
400
+ #
401
+ # # Steps 1 to L
402
+ # for t in range(L):
403
+ # h_for_meta = h_rnn[-1]
404
+ # x_prime, _ = transform_block(h_for_meta,
405
+ # x_l_seq[:, t], x_t_seq[:, t],
406
+ # x_w_seq[:, t], x_s_seq[:, t],
407
+ # epoch=epoch, top_k=top_k, warmup_epochs=warmup_epochs)
408
+ # x_prime = x_prime.unsqueeze(1)
409
+ # out_t, h_rnn = self.rnn(x_prime, h_rnn)
410
+ #
411
+ # mu_t = self.head(out_t.squeeze(1)).view(B, self.output_len, self.output_dim)
412
+ # mu_preds.append(mu_t.unsqueeze(1))
413
+ #
414
+ # mu_preds = torch.cat(mu_preds, dim=1) # [B, L+1, output_len, output_dim]
415
+ #
416
+ # # Now create logvar_preds: same shape, filled with fixed_logvar
417
+ # logvar_preds = self.fixed_logvar.expand_as(mu_preds).to(mu_preds.device)
418
+ #
419
+ # return mu_preds, logvar_preds
420
+ #
421
+
422
+
423
+ # ---------------- Decoder v2: predicted variance ----------------
424
+
425
+
426
+ #
427
+ # ## LSTM
428
+ # import torch, torch.nn as nn
429
+ # import torch.nn.functional as F
430
+ #
431
+ # class LSTM_Baseline(nn.Module):
432
+ # """
433
+ # Simple encoder‑decoder LSTM baseline.
434
+ # • All four modal inputs (load, temp, workday, season) are concatenated along feature dim
435
+ # so the external information is still available, but the model is otherwise “plain”.
436
+ # • The forward signature (extra **kwargs) lets the old training loop pass epoch/top_k/warmup
437
+ # without breaking anything.
438
+ # """
439
+ # def __init__(
440
+ # self,
441
+ # input_dim: int, # 1 → only the scalar value of each channel
442
+ # hidden_size: int, # e.g. 64
443
+ # output_len: int, # prediction horizon (3)
444
+ # output_dim: int = 1, # scalar prediction
445
+ # num_layers: int = 2,
446
+ # dropout: float = 0.1,
447
+ # ):
448
+ # super().__init__()
449
+ # self.hidden_size = hidden_size
450
+ # self.output_len = output_len
451
+ # self.output_dim = output_dim
452
+ # self.num_layers = num_layers
453
+ #
454
+ # # encoder & decoder
455
+ # self.encoder = nn.LSTM(
456
+ # input_size = input_dim * 4, # four channels concatenated
457
+ # hidden_size = hidden_size,
458
+ # num_layers = num_layers,
459
+ # batch_first = True,
460
+ # dropout = dropout if num_layers > 1 else 0.0,
461
+ # )
462
+ # self.decoder = nn.LSTM(
463
+ # input_size = input_dim * 4,
464
+ # hidden_size = hidden_size,
465
+ # num_layers = num_layers,
466
+ # batch_first = True,
467
+ # dropout = dropout if num_layers > 1 else 0.0,
468
+ # )
469
+ #
470
+ # self.out_layer = nn.Linear(hidden_size, output_dim)
471
+ #
472
+ # def forward(
473
+ # self,
474
+ # enc_l, enc_t, enc_w, enc_s,
475
+ # dec_l, dec_t, dec_w, dec_s,
476
+ # *unused, **unused_kw,
477
+ # ):
478
+ # """
479
+ # enc_* : [B, Lenc, 1] (load / temp / workday / season)
480
+ # dec_* : [B, Ldec, 1]
481
+ # return: [B, Lenc+1, output_len, 1] (to keep your downstream code intact)
482
+ # """
483
+ # B, Lenc, _ = enc_l.shape
484
+ #
485
+ # # 1) ---------- Encode ----------
486
+ # enc_in = torch.cat([enc_l, enc_t, enc_w, enc_s], dim=-1) # [B, Lenc, 4]
487
+ # _, (h_n, c_n) = self.encoder(enc_in) # carry hidden to decoder
488
+ #
489
+ # # 2) ---------- Decode ----------
490
+ # Ldec = dec_l.size(1) # usually 1 step (the teacher‑force token)
491
+ # dec_in = torch.cat([dec_l, dec_t, dec_w, dec_s], dim=-1) # [B, Ldec, 4]
492
+ # dec_out, _ = self.decoder(dec_in, (h_n, c_n)) # [B, Ldec, H]
493
+ # y0 = self.out_layer(dec_out[:, -1]) # last step → [B, output_dim]
494
+ #
495
+ # # 3) ---------- Autoregressive forecast ----------
496
+ # preds = []
497
+ # ht, ct = h_n, c_n
498
+ # xt = dec_in[:, -1] # start token
499
+ # for _ in range(self.output_len):
500
+ # xt = xt.unsqueeze(1) # [B,1,4]
501
+ # out, (ht, ct) = self.decoder(xt, (ht, ct)) # [B,1,H]
502
+ # yt = self.out_layer(out.squeeze(1)) # [B, output_dim]
503
+ # preds.append(yt)
504
+ # # next decoder input = last prediction repeated over 4 channels
505
+ # xt = torch.cat([yt]*4, dim=-1)
506
+ #
507
+ # # 3) ---------- Autoregressive forecast ----------
508
+ # preds = torch.stack(preds, dim=1) # [B, H, 1]
509
+ #
510
+ # # 4) ---------- match original return shape ----------
511
+ # seq_len_y = enc_l.size(1) - self.output_len + 1 # <-- NEW: 168‑>166
512
+ # preds = preds.unsqueeze(1).repeat(1, seq_len_y, 1, 1)
513
+ # return preds # [B, 166, 3, 1]
514
+ #