File size: 26,981 Bytes
616291b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
---
license: llama3.2
language:
- en
- zh
base_model:
- meta-llama/Llama-3.2-3B
- lianghsun/Llama-3.2-3B-F1-Base
library_name: transformers
tags:
- Taiwan
- R.O.C
- zhtw
- SLM
- Llama-32
datasets:
- lianghsun/tw-reasoning-instruct
- minyichen/tw-instruct-R1-200k
- minyichen/tw_mm_R1
model-index:
- name: Llama-3.2-3B-F1-Reasoning-Instruct
  results:
  - task:
      type: question-answering
      name: Single Choice Question
    dataset:
      type: ikala/tmmluplus
      name: tmmlu+
      config: all
      split: test
      revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
    metrics:
    - name: single choice
      type: accuracy
      value: 46.16
  - task:
      type: question-answering
      name: Single Choice Question
    dataset:
      type: cais/mmlu
      name: mmlu
      config: all
      split: test
      revision: c30699e
    metrics:
    - name: single choice
      type: accuracy
      value: 51.22
  - task:
      type: question-answering
      name: Single Choice Question
    dataset:
      type: lianghsun/tw-legal-benchmark-v1
      name: tw-legal-benchmark-v1
      config: all
      split: test
      revision: 66c3a5f
    metrics:
    - name: single choice
      type: accuracy
      value: 34.92
metrics:
- accuracy
---

# <span style="color: #7FFF7F;">Llama-3.2-3B-F1-Reasoning-Instruct GGUF Models</span>


## <span style="color: #7F7FFF;">Model Generation Details</span>

This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`064cc596`](https://github.com/ggerganov/llama.cpp/commit/064cc596ac44308dc326a17c9e3163c34a6f29d1).




## <span style="color: #7FFF7F;">Ultra-Low-Bit Quantization with IQ-DynamicGate (1-2 bit)</span>

Our latest quantization method introduces **precision-adaptive quantization** for ultra-low-bit models (1-2 bit), with benchmark-proven improvements on **Llama-3-8B**. This approach uses layer-specific strategies to preserve accuracy while maintaining extreme memory efficiency.

### **Benchmark Context**
All tests conducted on **Llama-3-8B-Instruct** using:
- Standard perplexity evaluation pipeline
- 2048-token context window
- Same prompt set across all quantizations

### **Method**
- **Dynamic Precision Allocation**:  
  - First/Last 25% of layers → IQ4_XS (selected layers)  
  - Middle 50% → IQ2_XXS/IQ3_S (increase efficiency)  
- **Critical Component Protection**:  
  - Embeddings/output layers use Q5_K  
  - Reduces error propagation by 38% vs standard 1-2bit  

### **Quantization Performance Comparison (Llama-3-8B)**

| Quantization | Standard PPL | DynamicGate PPL | Δ PPL   | Std Size | DG Size | Δ Size | Std Speed | DG Speed |
|--------------|--------------|------------------|---------|----------|---------|--------|-----------|----------|
| IQ2_XXS      | 11.30        | 9.84             | -12.9%  | 2.5G     | 2.6G    | +0.1G  | 234s      | 246s     |
| IQ2_XS       | 11.72        | 11.63            | -0.8%   | 2.7G     | 2.8G    | +0.1G  | 242s      | 246s     |
| IQ2_S        | 14.31        | 9.02             | -36.9%  | 2.7G     | 2.9G    | +0.2G  | 238s      | 244s     |
| IQ1_M        | 27.46        | 15.41            | -43.9%  | 2.2G     | 2.5G    | +0.3G  | 206s      | 212s     |
| IQ1_S        | 53.07        | 32.00            | -39.7%  | 2.1G     | 2.4G    | +0.3G  | 184s      | 209s     |

**Key**:
- PPL = Perplexity (lower is better)
- Δ PPL = Percentage change from standard to DynamicGate
- Speed = Inference time (CPU avx2, 2048 token context)
- Size differences reflect mixed quantization overhead

**Key Improvements:**
- 🔥 **IQ1_M** shows massive 43.9% perplexity reduction (27.46 → 15.41)
- 🚀 **IQ2_S** cuts perplexity by 36.9% while adding only 0.2GB
- ⚡ **IQ1_S** maintains 39.7% better accuracy despite 1-bit quantization

**Tradeoffs:**
- All variants have modest size increases (0.1-0.3GB)
- Inference speeds remain comparable (<5% difference)


### **When to Use These Models**
📌 **Fitting models into GPU VRAM**

**Memory-constrained deployments**

**Cpu and Edge Devices** where 1-2bit errors can be tolerated 
 
**Research** into ultra-low-bit quantization



## **Choosing the Right Model Format**  

Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**.  

### **BF16 (Brain Float 16) – Use if BF16 acceleration is available**  
- A 16-bit floating-point format designed for **faster computation** while retaining good precision.  
- Provides **similar dynamic range** as FP32 but with **lower memory usage**.  
- Recommended if your hardware supports **BF16 acceleration** (check your device's specs).  
- Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32.  

📌 **Use BF16 if:**  
✔ Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs).  
✔ You want **higher precision** while saving memory.  
✔ You plan to **requantize** the model into another format.  

📌 **Avoid BF16 if:**  
❌ Your hardware does **not** support BF16 (it may fall back to FP32 and run slower).  
❌ You need compatibility with older devices that lack BF16 optimization.  

---

### **F16 (Float 16) – More widely supported than BF16**  
- A 16-bit floating-point **high precision** but with less of range of values than BF16. 
- Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs).  
- Slightly lower numerical precision than BF16 but generally sufficient for inference.  

📌 **Use F16 if:**  
✔ Your hardware supports **FP16** but **not BF16**.  
✔ You need a **balance between speed, memory usage, and accuracy**.  
✔ You are running on a **GPU** or another device optimized for FP16 computations.  

📌 **Avoid F16 if:**  
❌ Your device lacks **native FP16 support** (it may run slower than expected).  
❌ You have memory limitations.  

---

### **Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference**  
Quantization reduces model size and memory usage while maintaining as much accuracy as possible.  
- **Lower-bit models (Q4_K)****Best for minimal memory usage**, may have lower precision.  
- **Higher-bit models (Q6_K, Q8_0)****Better accuracy**, requires more memory.  

📌 **Use Quantized Models if:**  
✔ You are running inference on a **CPU** and need an optimized model.  
✔ Your device has **low VRAM** and cannot load full-precision models.  
✔ You want to reduce **memory footprint** while keeping reasonable accuracy.  

📌 **Avoid Quantized Models if:**  
❌ You need **maximum accuracy** (full-precision models are better for this).  
❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16).  

---

### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)**  
These models are optimized for **extreme memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint.  

- **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **extreme memory efficiency**.  
  - **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large.  
  - **Trade-off**: Lower accuracy compared to higher-bit quantizations.  

- **IQ3_S**: Small block size for **maximum memory efficiency**.  
  - **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive.  

- **IQ3_M**: Medium block size for better accuracy than **IQ3_S**.  
  - **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting.  

- **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy.  
  - **Use case**: Best for **low-memory devices** where **Q6_K** is too large.  

- **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**.  
  - **Use case**: Best for **ARM-based devices** or **low-memory environments**.  

---

### **Summary Table: Model Format Selection**  

| Model Format  | Precision  | Memory Usage  | Device Requirements  | Best Use Case  |  
|--------------|------------|---------------|----------------------|---------------|  
| **BF16**     | Highest    | High          | BF16-supported GPU/CPUs  | High-speed inference with reduced memory |  
| **F16**      | High       | High          | FP16-supported devices | GPU inference when BF16 isn't available |  
| **Q4_K**     | Medium Low | Low           | CPU or Low-VRAM devices | Best for memory-constrained environments |  
| **Q6_K**     | Medium     | Moderate      | CPU with more memory | Better accuracy while still being quantized |  
| **Q8_0**     | High       | Moderate      | CPU or GPU with enough VRAM | Best accuracy among quantized models |  
| **IQ3_XS**   | Very Low   | Very Low      | Ultra-low-memory devices | Extreme memory efficiency and low accuracy |  
| **Q4_0**     | Low        | Low           | ARM or low-memory devices | llama.cpp can optimize for ARM devices |  

---

## **Included Files & Details**  

### `Llama-3.2-3B-F1-Reasoning-Instruct-bf16.gguf`  
- Model weights preserved in **BF16**.  
- Use this if you want to **requantize** the model into a different format.  
- Best if your device supports **BF16 acceleration**.  

### `Llama-3.2-3B-F1-Reasoning-Instruct-f16.gguf`  
- Model weights stored in **F16**.  
- Use if your device supports **FP16**, especially if BF16 is not available.  

### `Llama-3.2-3B-F1-Reasoning-Instruct-bf16-q8_0.gguf`  
- **Output & embeddings** remain in **BF16**.  
- All other layers quantized to **Q8_0**.  
- Use if your device supports **BF16** and you want a quantized version.  

### `Llama-3.2-3B-F1-Reasoning-Instruct-f16-q8_0.gguf`  
- **Output & embeddings** remain in **F16**.  
- All other layers quantized to **Q8_0**.    

### `Llama-3.2-3B-F1-Reasoning-Instruct-q4_k.gguf`  
- **Output & embeddings** quantized to **Q8_0**.  
- All other layers quantized to **Q4_K**.  
- Good for **CPU inference** with limited memory.  

### `Llama-3.2-3B-F1-Reasoning-Instruct-q4_k_s.gguf`  
- Smallest **Q4_K** variant, using less memory at the cost of accuracy.  
- Best for **very low-memory setups**.  

### `Llama-3.2-3B-F1-Reasoning-Instruct-q6_k.gguf`  
- **Output & embeddings** quantized to **Q8_0**.  
- All other layers quantized to **Q6_K** .  

### `Llama-3.2-3B-F1-Reasoning-Instruct-q8_0.gguf`  
- Fully **Q8** quantized model for better accuracy.  
- Requires **more memory** but offers higher precision.  

### `Llama-3.2-3B-F1-Reasoning-Instruct-iq3_xs.gguf`  
- **IQ3_XS** quantization, optimized for **extreme memory efficiency**.  
- Best for **ultra-low-memory devices**.  

### `Llama-3.2-3B-F1-Reasoning-Instruct-iq3_m.gguf`  
- **IQ3_M** quantization, offering a **medium block size** for better accuracy.  
- Suitable for **low-memory devices**.  

### `Llama-3.2-3B-F1-Reasoning-Instruct-q4_0.gguf`  
- Pure **Q4_0** quantization, optimized for **ARM devices**.  
- Best for **low-memory environments**.
- Prefer IQ4_NL for better accuracy.

# <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>
❤ **Please click "Like" if you find this useful!**  
Help me test my **AI-Powered Network Monitor Assistant** with **quantum-ready security checks**:  
👉 [Free Network Monitor](https://readyforquantum.com/dashboard/?assistant=open)  

💬 **How to test**:  
 Choose an **AI assistant type**:  
   - `TurboLLM` (GPT-4o-mini)  
   - `HugLLM` (Hugginface Open-source)  
   - `TestLLM` (Experimental CPU-only)  

### **What I’m Testing**  
I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:  
- **Function calling** against live network services  
- **How small can a model go** while still handling:  
  - Automated **Nmap scans**  
  - **Quantum-readiness checks**  
  - **Network Monitoring tasks**  

🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads):  
-**Zero-configuration setup**  
- ⏳ 30s load time (slow inference but **no API costs**)  
- 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!  

### **Other Assistants**  
🟢 **TurboLLM** – Uses **gpt-4o-mini** for: 
- **Create custom cmd processors to run .net code on Free Network Monitor Agents**
- **Real-time network diagnostics and monitoring**
- **Security Audits**
- **Penetration testing** (Nmap/Metasploit)  
- 🔑 Get more tokens by logging in or [downloading our Free Network Monitor Agent with integrated AI Assistant](https://readyforquantum.com/download)  

🔵 **HugLLM** – Latest Open-source models:  
- 🌐 Runs on Hugging Face Inference API  

### 💡 **Example commands to you could test**:  
1. `"Give me info on my websites SSL certificate"`  
2. `"Check if my server is using quantum safe encyption for communication"`  
3. `"Run a comprehensive security audit on my server"`
4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Free Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution!



# Model Card for Llama-3.2-3B-F1-Reasoning-Instruct (a.k.a __Formosa-1-Reasoning__ or __F1-Reasoning__)

<div align="center" style="line-height: 1;">
  <a href="https://discord.gg/Cx737yw4ed" target="_blank" style="margin: 2px;">
    <img alt="Discord" src="https://img.shields.io/badge/Discord-Twinkle%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://huggingface.co/twinkle-ai" target="_blank" style="margin: 2px;">
    <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Twinkle%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
  </a>
</div>

<div align="center" style="line-height: 1;">
  <a href="https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/LICENSE.txt" style="margin: 2px;">
    <img alt="License" src="https://img.shields.io/badge/License-llama3.2-f5de53?&color=0081fb" style="display: inline-block; vertical-align: middle;"/>
  </a>
</div>

![image/png](https://cdn-uploads.huggingface.co/production/uploads/618dc56cbc345ca7bf95f3cd/lBonfNs_7lzYguD4kJo6z.png)

<!-- Provide a quick summary of what the model is/does. -->
**Llama-3.2-3B-F1-Reasoning-Instruct**(a.k.a **Formosa-1-Reasoning** or **F1-Reasoning**) 是由 **[Twinkle AI](https://huggingface.co/twinkle-ai)****[APMIC](https://www.apmic.ai/)** 合作開發,並在[國家高速網路與計算中心](https://www.nchc.org.tw/)技術指導之下,針對中華民國台灣語境與任務需求所微調之繁體中文語言模型,涵蓋法律、教育、生活應用等多元場景,並以高指令跟隨能力為目標進行強化。

## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

- **Developed by:** [Liang Hsun Huang](https://huggingface.co/lianghsun)、[Min Yi Chen](https://huggingface.co/minyichen)、[Wen Bin Lin](https://huggingface.co/tedslin)、[Chao Chun Chuang](https://huggingface.co/c00cjz00) & [Dave Sung](https://huggingface.co/k1dave6412) (All authors have contributed equally to this work.)
- **Funded by:** [APMIC](https://www.apmic.ai/)
- **Model type:** LlamaForCausalLM
- **Language(s) (NLP):** Tranditional Chinese & English
- **License:** [llama3.2](https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/LICENSE.txt)

### Model Sources
<!-- Provide the basic links for the model. -->

- **Repository:** [twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct](https://huggingface.co/twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct)
- **Paper:** (TBA)
- **Demo:** [Playground](https://3b02.coolify.apmic.ai/)

## Evaluation

### Results

下表採用 [🌟 Twinkle Eval](https://github.com/ai-twinkle/Eval) 評測框架
| 模型                               | 評測模式 | TMMLU+(%)       | 台灣法律(%)      | MMLU(%)         | 測試次數 | 選項排序 |
|------------------------------------|---------|----------------|----------------|----------------|---------|---------|
| [mistralai/Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501) | box     | 56.15 (±0.0172) | 37.48 (±0.0098) | 74.61 (±0.0154) | 3       | 隨機    |
| [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct)   | box     | 15.49 (±0.0104) | 25.68 (±0.0200) | 6.90 (±0.0096) | 3       | 隨機    |
| [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct)   | pattern | 35.85 (±0.0174) | 32.22 (±0.0023) | 59.33 (±0.0168) | 3       | 隨機    |
| [MediaTek-Research/Llama-Breeze2-3B-Instruct](https://huggingface.co/MediaTek-Research/Llama-Breeze2-3B-Instruct) | pattern | 40.32 (±0.0181) | 38.92 (±0.0193) | 55.37 (±0.0180) | 3       | 隨機    |
| [twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct](https://huggingface.co/twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct) (ours) | box | 46.16 (±0.0198) | 34.92 (±0.0243) | 51.22 (±0.0206) | 3       | 隨機    |

下表用 lighteval 評測框架
| 模型                                       | MATH-500 | GPQA Diamond |
|--------------------------------------------|----------|--------------|
| [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct)                       | 44.40    | 27.78        |
| [twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct](https://huggingface.co/twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct) (ours)   | **51.40**| **33.84**    |


---

## 🔧 Tool Calling

本模型使用 Hermes 格式訓練,並支援平行呼叫(Parallel calling),以下為完整範例流程。
Tool call 模板已經為大家寫好放進 chat-template 了,Enjoy it!

### 1️⃣ 啟動 vLLM 後端
> **⚠️ 注意:需要 vLLM 版本 >= 0.8.3,否則 `enable-reasoning`、`enable-auto-tool-choice` 無法同時開啟**

```bash
vllm serve twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct \
  --port 8001 \
  --enable-reasoning \
  --reasoning-parser deepseek_r1 \
  --enable-auto-tool-choice \
  --tool-call-parser hermes
```

### 2️⃣ 定義工具(Functions)

```python
def get_weather(location: str, unit: str):
    return f"{location}的氣溫是{unit}26度,晴朗無風"

def search(query: str):
    return "川普終於宣布對等關稅政策,針對 18 個經濟體課徵一半的對等關稅,並從 4/5 起對所有進口產品徵收10%的基準關稅!美國將針對被認定為不當貿易行為(不公平貿易) 的國家,於 4/9 起課徵報復型對等關稅 (Discounted Reciprocal Tariff),例如:日本將被課徵 24% 的關稅,歐盟則為 20%,以取代普遍性的 10% 關稅。\n針對中國則開啟新一波 34% 關稅,並疊加於先前已實施的關稅上,這將使中國進口商品的基本關稅稅率達到 54%,而且這尚未包含拜登總統任內或川普第一任期所施加的額外關稅。加拿大與墨西哥則不適用這套對等關稅制度,但川普認為這些國家在芬太尼危機與非法移民問題尚未完全解決,因此計畫對這兩國的大多數進口商品施加 25% 關稅。另外原本針對汽車與多數其他商品的關稅豁免將於 4/2 到期。\n台灣的部分,美國擬向台灣課徵32%的對等關稅,雖然並未針對晶片特別課徵關稅,但仍在記者會中提到台灣搶奪所有的電腦與半導體晶片,最終促成台積電對美國投資計劃額外加碼 1,000 億美元的歷史性投資;歐盟則課徵20%的對等關稅。最後是汽車關稅將於 4/2 起,對所有外國製造的汽車課徵25% 關稅。"

tools = [
    {
        "type": "function",
        "function": {
            "name": "get_weather",
            "description": "Get the current weather in a given location",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {"type": "string", "description": "國家或城市名, e.g., 'Taipei'、'Jaipei'"},
                    "unit": {"type": "string", "description": "氣溫單位,亞洲城市使用攝氏;歐美城市使用華氏", "enum": ["celsius", "fahrenheit"]}
                },
                "required": ["location", "unit"]
            }
        }
    },
    {
        "type": "function",
        "function": {
            "name": "search",
            "description": "這是一個類似 Google 的搜尋引擎,關於知識、天氣、股票、電影、小說、百科等等問題,如果你不確定答案就搜尋一下。",
            "parameters": {
                "type": "object",
                "properties": {
                    "query": {"type": "string", "description": "should be a search query, e.g., '2024 南韓 戒嚴'"}
                },
                "required": ["query"]
            }
        }
    }
]
```

### 3️⃣ 執行工具調用(Tool Calls)

> **⚠️ 注意:system_prompt 可以不用帶,除非是需要時間基準的工具。**
```python
response = client.chat.completions.create(
    model=client.models.list().data[0].id,
    messages=[
        {"role": "system", "content": "記住你的知識截止於 2024/12,今天是 2025/4/7"},
        {"role": "user", "content": "台北氣溫如何? 另外,告訴我川普最新關稅政策"},
    ],
    max_tokens=1500,
    temperature=0.6,
    top_p=0.95,
    tools=tools,
    tool_choice="auto"
)

print(response.choices[0].message.reasoning_content)
print(response.choices[0].message.tool_calls)
```

#### 🧠 推理內容輸出(僅顯示部分)
> 好的,我需要幫助這個使用者解決他們的問題。他們問了兩件事:首先,臺北市的天氣情況,以及第二,關於川普最近的關稅政策。  
> 對於第一部分,他們提到了“臺北”,所以應該呼叫 get_weather 函式…  
> 接下來是關於川普的新關稅政策…  
> 總結一下,我需要分別進行兩次 API 呼叫,每次都有各自正確填寫的參數…

#### ⚙️ Tool Calls List


```json
[ChatCompletionMessageToolCall(id='chatcmpl-tool-35e74420119349999913a10133b84bd3', function=Function(arguments='{"location": "Taipei", "unit": "celsius"}', name='get_weather'), type='function'), ChatCompletionMessageToolCall(id='chatcmpl-tool-7ffdcb98e59f4134a6171defe7f2e31b', function=Function(arguments='{"query": "Donald Trump latest tariffs policy"}', name='search'), type='function')]
```

### 4️⃣ 產生最終回答

```python
response = client.chat.completions.create(
    model=client.models.list().data[0].id,
    messages=[
        {"role": "system", "content": "記住你的知識截止於 2024/12,今天是 2025/4/7"},
        {"role": "user", "content": "台北氣溫如何? 另外,告訴我川普最新關稅政策"},
        {
            "role": "assistant",
            "content": "",
            "tool_calls": [
                {
                    "id": response.choices[0].message.tool_calls[0].id,
                    "type": "function",
                    "function": {
                        "name": response.choices[0].message.tool_calls[0].function.name,
                        "arguments": response.choices[0].message.tool_calls[0].function.arguments
                    }
                },
                {
                    "id": response.choices[0].message.tool_calls[1].id,
                    "type": "function",
                    "function": {
                        "name": response.choices[0].message.tool_calls[1].function.name,
                        "arguments": response.choices[0].message.tool_calls[1].function.arguments
                    }
                }
            ]
        },
        {
            "role": "tool",
            "content": search(**json.loads(response.choices[0].message.tool_calls[0].function.arguments)),
            "tool_call_id": response.choices[0].message.tool_calls[0].id # tool_call_id 必須要帶,才能正確配對 工具 及 tool_call
        },
        {
            "role": "tool",
            "content": get_weather(**json.loads(response.choices[0].message.tool_calls[1].function.arguments)),
            "tool_call_id": response.choices[0].message.tool_calls[1].id # tool_call_id 必須要帶,才能正確配對 工具 及 tool_call
        }
    ],
    max_tokens=1500,
    temperature=0.6,
    top_p=0.95,
    tools=tools,
    tool_choice="auto"
)

print(response.choices[0].message.reasoning_content)
print(response.choices[0].message.content)
```

#### 🧠 推理內容輸出(僅顯示部分)
> 首先,我需要處理使用者的查詢,他們要求了解臺北市的當下氣溫以及川普最近的關稅政策…  
> 在呼叫了 `get_weather` 後得到了臺北市氣溫為 26 度(攝氏)…  
> 接著,使用 `search` 搜尋「川普最新關稅政策 2025」…  
> 整合後,我提供如下摘要:

#### 📋 最終輸出內容

```text
以下是您請求的資訊:

**臺北市氣溫**
- 目前的氣溫為 **26°C**(攝氏)
- 天候狀況:晴朗無風

**川普最新關稅政策概述**
1. **對等關稅政策**  
   - 對 18 個經濟體課徵 50% 的對等關稅  
   - 自 4 月 5 日起,所有進口產品全面徵收 10% 基本關稅  

2. **報復型對等關稅**  
   - 日本 24%、歐盟 20%  

3. **對中國的高額關稅**  
   - 增加至 54%(原有關稅 + 新增 34%)  

4. **特殊案例**  
   - 加拿大與墨西哥不適用,但其他商品課徵 25%  
   - 汽車與部分商品的免稅即將到期  

5. **對台灣的影響**  
   - 美國計畫對台灣課徵 32% 關稅,但晶片暫無額外課稅  

6. **全球視角**  
   - 歐盟與日本關稅比例相對較高
```


## Citation

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
```yaml
@misc{twinkleai2025llama3.2f1,
  title        = {Llama-3.2-3B-F1-Reasoning-Instruct: A Traditional Chinese Instruction-Tuned Reasoning Language Model for Taiwan},
  author       = {Huang, Liang Hsun and Chen, Min Yi and Lin, Wen Bin and Chuang, Chao Chun and Sung, Dave},
  year         = {2025},
  howpublished = {\url{https://huggingface.co/twinkle-ai/Llama-3.2-3B-F1-Instruct}},
  note         = {Twinkle AI and APMIC. All authors contributed equally.}
}
```

## Acknowledge
- 特此感謝[國家高速網路與計算中心](https://www.nchc.org.tw/)的指導與 [APMIC](https://www.apmic.ai/) 的算力支援,才得以讓本專案訓利完成。
- 特此致謝黃啟聖老師、許武龍(哈爸)、臺北市立第一女子高級中學物理科陳姿燁老師、[奈視科技](https://nanoseex.com/) CTO Howard、[AIPLUX Technology](https://aiplux.com/)、郭家嘉老師以及所有在資料集製作過程中提供寶貴協助的夥伴。

## Model Card Authors

[Twinkle AI](https://huggingface.co/twinkle-ai)

## Model Card Contact

[Twinkle AI](https://huggingface.co/twinkle-ai)