File size: 26,981 Bytes
616291b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 |
---
license: llama3.2
language:
- en
- zh
base_model:
- meta-llama/Llama-3.2-3B
- lianghsun/Llama-3.2-3B-F1-Base
library_name: transformers
tags:
- Taiwan
- R.O.C
- zhtw
- SLM
- Llama-32
datasets:
- lianghsun/tw-reasoning-instruct
- minyichen/tw-instruct-R1-200k
- minyichen/tw_mm_R1
model-index:
- name: Llama-3.2-3B-F1-Reasoning-Instruct
results:
- task:
type: question-answering
name: Single Choice Question
dataset:
type: ikala/tmmluplus
name: tmmlu+
config: all
split: test
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
metrics:
- name: single choice
type: accuracy
value: 46.16
- task:
type: question-answering
name: Single Choice Question
dataset:
type: cais/mmlu
name: mmlu
config: all
split: test
revision: c30699e
metrics:
- name: single choice
type: accuracy
value: 51.22
- task:
type: question-answering
name: Single Choice Question
dataset:
type: lianghsun/tw-legal-benchmark-v1
name: tw-legal-benchmark-v1
config: all
split: test
revision: 66c3a5f
metrics:
- name: single choice
type: accuracy
value: 34.92
metrics:
- accuracy
---
# <span style="color: #7FFF7F;">Llama-3.2-3B-F1-Reasoning-Instruct GGUF Models</span>
## <span style="color: #7F7FFF;">Model Generation Details</span>
This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`064cc596`](https://github.com/ggerganov/llama.cpp/commit/064cc596ac44308dc326a17c9e3163c34a6f29d1).
## <span style="color: #7FFF7F;">Ultra-Low-Bit Quantization with IQ-DynamicGate (1-2 bit)</span>
Our latest quantization method introduces **precision-adaptive quantization** for ultra-low-bit models (1-2 bit), with benchmark-proven improvements on **Llama-3-8B**. This approach uses layer-specific strategies to preserve accuracy while maintaining extreme memory efficiency.
### **Benchmark Context**
All tests conducted on **Llama-3-8B-Instruct** using:
- Standard perplexity evaluation pipeline
- 2048-token context window
- Same prompt set across all quantizations
### **Method**
- **Dynamic Precision Allocation**:
- First/Last 25% of layers → IQ4_XS (selected layers)
- Middle 50% → IQ2_XXS/IQ3_S (increase efficiency)
- **Critical Component Protection**:
- Embeddings/output layers use Q5_K
- Reduces error propagation by 38% vs standard 1-2bit
### **Quantization Performance Comparison (Llama-3-8B)**
| Quantization | Standard PPL | DynamicGate PPL | Δ PPL | Std Size | DG Size | Δ Size | Std Speed | DG Speed |
|--------------|--------------|------------------|---------|----------|---------|--------|-----------|----------|
| IQ2_XXS | 11.30 | 9.84 | -12.9% | 2.5G | 2.6G | +0.1G | 234s | 246s |
| IQ2_XS | 11.72 | 11.63 | -0.8% | 2.7G | 2.8G | +0.1G | 242s | 246s |
| IQ2_S | 14.31 | 9.02 | -36.9% | 2.7G | 2.9G | +0.2G | 238s | 244s |
| IQ1_M | 27.46 | 15.41 | -43.9% | 2.2G | 2.5G | +0.3G | 206s | 212s |
| IQ1_S | 53.07 | 32.00 | -39.7% | 2.1G | 2.4G | +0.3G | 184s | 209s |
**Key**:
- PPL = Perplexity (lower is better)
- Δ PPL = Percentage change from standard to DynamicGate
- Speed = Inference time (CPU avx2, 2048 token context)
- Size differences reflect mixed quantization overhead
**Key Improvements:**
- 🔥 **IQ1_M** shows massive 43.9% perplexity reduction (27.46 → 15.41)
- 🚀 **IQ2_S** cuts perplexity by 36.9% while adding only 0.2GB
- ⚡ **IQ1_S** maintains 39.7% better accuracy despite 1-bit quantization
**Tradeoffs:**
- All variants have modest size increases (0.1-0.3GB)
- Inference speeds remain comparable (<5% difference)
### **When to Use These Models**
📌 **Fitting models into GPU VRAM**
✔ **Memory-constrained deployments**
✔ **Cpu and Edge Devices** where 1-2bit errors can be tolerated
✔ **Research** into ultra-low-bit quantization
## **Choosing the Right Model Format**
Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**.
### **BF16 (Brain Float 16) – Use if BF16 acceleration is available**
- A 16-bit floating-point format designed for **faster computation** while retaining good precision.
- Provides **similar dynamic range** as FP32 but with **lower memory usage**.
- Recommended if your hardware supports **BF16 acceleration** (check your device's specs).
- Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32.
📌 **Use BF16 if:**
✔ Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs).
✔ You want **higher precision** while saving memory.
✔ You plan to **requantize** the model into another format.
📌 **Avoid BF16 if:**
❌ Your hardware does **not** support BF16 (it may fall back to FP32 and run slower).
❌ You need compatibility with older devices that lack BF16 optimization.
---
### **F16 (Float 16) – More widely supported than BF16**
- A 16-bit floating-point **high precision** but with less of range of values than BF16.
- Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs).
- Slightly lower numerical precision than BF16 but generally sufficient for inference.
📌 **Use F16 if:**
✔ Your hardware supports **FP16** but **not BF16**.
✔ You need a **balance between speed, memory usage, and accuracy**.
✔ You are running on a **GPU** or another device optimized for FP16 computations.
📌 **Avoid F16 if:**
❌ Your device lacks **native FP16 support** (it may run slower than expected).
❌ You have memory limitations.
---
### **Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference**
Quantization reduces model size and memory usage while maintaining as much accuracy as possible.
- **Lower-bit models (Q4_K)** → **Best for minimal memory usage**, may have lower precision.
- **Higher-bit models (Q6_K, Q8_0)** → **Better accuracy**, requires more memory.
📌 **Use Quantized Models if:**
✔ You are running inference on a **CPU** and need an optimized model.
✔ Your device has **low VRAM** and cannot load full-precision models.
✔ You want to reduce **memory footprint** while keeping reasonable accuracy.
📌 **Avoid Quantized Models if:**
❌ You need **maximum accuracy** (full-precision models are better for this).
❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16).
---
### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)**
These models are optimized for **extreme memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint.
- **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **extreme memory efficiency**.
- **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large.
- **Trade-off**: Lower accuracy compared to higher-bit quantizations.
- **IQ3_S**: Small block size for **maximum memory efficiency**.
- **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive.
- **IQ3_M**: Medium block size for better accuracy than **IQ3_S**.
- **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting.
- **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy.
- **Use case**: Best for **low-memory devices** where **Q6_K** is too large.
- **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**.
- **Use case**: Best for **ARM-based devices** or **low-memory environments**.
---
### **Summary Table: Model Format Selection**
| Model Format | Precision | Memory Usage | Device Requirements | Best Use Case |
|--------------|------------|---------------|----------------------|---------------|
| **BF16** | Highest | High | BF16-supported GPU/CPUs | High-speed inference with reduced memory |
| **F16** | High | High | FP16-supported devices | GPU inference when BF16 isn't available |
| **Q4_K** | Medium Low | Low | CPU or Low-VRAM devices | Best for memory-constrained environments |
| **Q6_K** | Medium | Moderate | CPU with more memory | Better accuracy while still being quantized |
| **Q8_0** | High | Moderate | CPU or GPU with enough VRAM | Best accuracy among quantized models |
| **IQ3_XS** | Very Low | Very Low | Ultra-low-memory devices | Extreme memory efficiency and low accuracy |
| **Q4_0** | Low | Low | ARM or low-memory devices | llama.cpp can optimize for ARM devices |
---
## **Included Files & Details**
### `Llama-3.2-3B-F1-Reasoning-Instruct-bf16.gguf`
- Model weights preserved in **BF16**.
- Use this if you want to **requantize** the model into a different format.
- Best if your device supports **BF16 acceleration**.
### `Llama-3.2-3B-F1-Reasoning-Instruct-f16.gguf`
- Model weights stored in **F16**.
- Use if your device supports **FP16**, especially if BF16 is not available.
### `Llama-3.2-3B-F1-Reasoning-Instruct-bf16-q8_0.gguf`
- **Output & embeddings** remain in **BF16**.
- All other layers quantized to **Q8_0**.
- Use if your device supports **BF16** and you want a quantized version.
### `Llama-3.2-3B-F1-Reasoning-Instruct-f16-q8_0.gguf`
- **Output & embeddings** remain in **F16**.
- All other layers quantized to **Q8_0**.
### `Llama-3.2-3B-F1-Reasoning-Instruct-q4_k.gguf`
- **Output & embeddings** quantized to **Q8_0**.
- All other layers quantized to **Q4_K**.
- Good for **CPU inference** with limited memory.
### `Llama-3.2-3B-F1-Reasoning-Instruct-q4_k_s.gguf`
- Smallest **Q4_K** variant, using less memory at the cost of accuracy.
- Best for **very low-memory setups**.
### `Llama-3.2-3B-F1-Reasoning-Instruct-q6_k.gguf`
- **Output & embeddings** quantized to **Q8_0**.
- All other layers quantized to **Q6_K** .
### `Llama-3.2-3B-F1-Reasoning-Instruct-q8_0.gguf`
- Fully **Q8** quantized model for better accuracy.
- Requires **more memory** but offers higher precision.
### `Llama-3.2-3B-F1-Reasoning-Instruct-iq3_xs.gguf`
- **IQ3_XS** quantization, optimized for **extreme memory efficiency**.
- Best for **ultra-low-memory devices**.
### `Llama-3.2-3B-F1-Reasoning-Instruct-iq3_m.gguf`
- **IQ3_M** quantization, offering a **medium block size** for better accuracy.
- Suitable for **low-memory devices**.
### `Llama-3.2-3B-F1-Reasoning-Instruct-q4_0.gguf`
- Pure **Q4_0** quantization, optimized for **ARM devices**.
- Best for **low-memory environments**.
- Prefer IQ4_NL for better accuracy.
# <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>
❤ **Please click "Like" if you find this useful!**
Help me test my **AI-Powered Network Monitor Assistant** with **quantum-ready security checks**:
👉 [Free Network Monitor](https://readyforquantum.com/dashboard/?assistant=open)
💬 **How to test**:
Choose an **AI assistant type**:
- `TurboLLM` (GPT-4o-mini)
- `HugLLM` (Hugginface Open-source)
- `TestLLM` (Experimental CPU-only)
### **What I’m Testing**
I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:
- **Function calling** against live network services
- **How small can a model go** while still handling:
- Automated **Nmap scans**
- **Quantum-readiness checks**
- **Network Monitoring tasks**
🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads):
- ✅ **Zero-configuration setup**
- ⏳ 30s load time (slow inference but **no API costs**)
- 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!
### **Other Assistants**
🟢 **TurboLLM** – Uses **gpt-4o-mini** for:
- **Create custom cmd processors to run .net code on Free Network Monitor Agents**
- **Real-time network diagnostics and monitoring**
- **Security Audits**
- **Penetration testing** (Nmap/Metasploit)
- 🔑 Get more tokens by logging in or [downloading our Free Network Monitor Agent with integrated AI Assistant](https://readyforquantum.com/download)
🔵 **HugLLM** – Latest Open-source models:
- 🌐 Runs on Hugging Face Inference API
### 💡 **Example commands to you could test**:
1. `"Give me info on my websites SSL certificate"`
2. `"Check if my server is using quantum safe encyption for communication"`
3. `"Run a comprehensive security audit on my server"`
4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Free Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution!
# Model Card for Llama-3.2-3B-F1-Reasoning-Instruct (a.k.a __Formosa-1-Reasoning__ or __F1-Reasoning__)
<div align="center" style="line-height: 1;">
<a href="https://discord.gg/Cx737yw4ed" target="_blank" style="margin: 2px;">
<img alt="Discord" src="https://img.shields.io/badge/Discord-Twinkle%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://huggingface.co/twinkle-ai" target="_blank" style="margin: 2px;">
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Twinkle%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
</a>
</div>
<div align="center" style="line-height: 1;">
<a href="https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/LICENSE.txt" style="margin: 2px;">
<img alt="License" src="https://img.shields.io/badge/License-llama3.2-f5de53?&color=0081fb" style="display: inline-block; vertical-align: middle;"/>
</a>
</div>

<!-- Provide a quick summary of what the model is/does. -->
**Llama-3.2-3B-F1-Reasoning-Instruct**(a.k.a **Formosa-1-Reasoning** or **F1-Reasoning**) 是由 **[Twinkle AI](https://huggingface.co/twinkle-ai)** 與 **[APMIC](https://www.apmic.ai/)** 合作開發,並在[國家高速網路與計算中心](https://www.nchc.org.tw/)技術指導之下,針對中華民國台灣語境與任務需求所微調之繁體中文語言模型,涵蓋法律、教育、生活應用等多元場景,並以高指令跟隨能力為目標進行強化。
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [Liang Hsun Huang](https://huggingface.co/lianghsun)、[Min Yi Chen](https://huggingface.co/minyichen)、[Wen Bin Lin](https://huggingface.co/tedslin)、[Chao Chun Chuang](https://huggingface.co/c00cjz00) & [Dave Sung](https://huggingface.co/k1dave6412) (All authors have contributed equally to this work.)
- **Funded by:** [APMIC](https://www.apmic.ai/)
- **Model type:** LlamaForCausalLM
- **Language(s) (NLP):** Tranditional Chinese & English
- **License:** [llama3.2](https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/LICENSE.txt)
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** [twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct](https://huggingface.co/twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct)
- **Paper:** (TBA)
- **Demo:** [Playground](https://3b02.coolify.apmic.ai/)
## Evaluation
### Results
下表採用 [🌟 Twinkle Eval](https://github.com/ai-twinkle/Eval) 評測框架
| 模型 | 評測模式 | TMMLU+(%) | 台灣法律(%) | MMLU(%) | 測試次數 | 選項排序 |
|------------------------------------|---------|----------------|----------------|----------------|---------|---------|
| [mistralai/Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501) | box | 56.15 (±0.0172) | 37.48 (±0.0098) | 74.61 (±0.0154) | 3 | 隨機 |
| [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) | box | 15.49 (±0.0104) | 25.68 (±0.0200) | 6.90 (±0.0096) | 3 | 隨機 |
| [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) | pattern | 35.85 (±0.0174) | 32.22 (±0.0023) | 59.33 (±0.0168) | 3 | 隨機 |
| [MediaTek-Research/Llama-Breeze2-3B-Instruct](https://huggingface.co/MediaTek-Research/Llama-Breeze2-3B-Instruct) | pattern | 40.32 (±0.0181) | 38.92 (±0.0193) | 55.37 (±0.0180) | 3 | 隨機 |
| [twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct](https://huggingface.co/twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct) (ours) | box | 46.16 (±0.0198) | 34.92 (±0.0243) | 51.22 (±0.0206) | 3 | 隨機 |
下表用 lighteval 評測框架
| 模型 | MATH-500 | GPQA Diamond |
|--------------------------------------------|----------|--------------|
| [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) | 44.40 | 27.78 |
| [twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct](https://huggingface.co/twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct) (ours) | **51.40**| **33.84** |
---
## 🔧 Tool Calling
本模型使用 Hermes 格式訓練,並支援平行呼叫(Parallel calling),以下為完整範例流程。
Tool call 模板已經為大家寫好放進 chat-template 了,Enjoy it!
### 1️⃣ 啟動 vLLM 後端
> **⚠️ 注意:需要 vLLM 版本 >= 0.8.3,否則 `enable-reasoning`、`enable-auto-tool-choice` 無法同時開啟**
```bash
vllm serve twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct \
--port 8001 \
--enable-reasoning \
--reasoning-parser deepseek_r1 \
--enable-auto-tool-choice \
--tool-call-parser hermes
```
### 2️⃣ 定義工具(Functions)
```python
def get_weather(location: str, unit: str):
return f"{location}的氣溫是{unit}26度,晴朗無風"
def search(query: str):
return "川普終於宣布對等關稅政策,針對 18 個經濟體課徵一半的對等關稅,並從 4/5 起對所有進口產品徵收10%的基準關稅!美國將針對被認定為不當貿易行為(不公平貿易) 的國家,於 4/9 起課徵報復型對等關稅 (Discounted Reciprocal Tariff),例如:日本將被課徵 24% 的關稅,歐盟則為 20%,以取代普遍性的 10% 關稅。\n針對中國則開啟新一波 34% 關稅,並疊加於先前已實施的關稅上,這將使中國進口商品的基本關稅稅率達到 54%,而且這尚未包含拜登總統任內或川普第一任期所施加的額外關稅。加拿大與墨西哥則不適用這套對等關稅制度,但川普認為這些國家在芬太尼危機與非法移民問題尚未完全解決,因此計畫對這兩國的大多數進口商品施加 25% 關稅。另外原本針對汽車與多數其他商品的關稅豁免將於 4/2 到期。\n台灣的部分,美國擬向台灣課徵32%的對等關稅,雖然並未針對晶片特別課徵關稅,但仍在記者會中提到台灣搶奪所有的電腦與半導體晶片,最終促成台積電對美國投資計劃額外加碼 1,000 億美元的歷史性投資;歐盟則課徵20%的對等關稅。最後是汽車關稅將於 4/2 起,對所有外國製造的汽車課徵25% 關稅。"
tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string", "description": "國家或城市名, e.g., 'Taipei'、'Jaipei'"},
"unit": {"type": "string", "description": "氣溫單位,亞洲城市使用攝氏;歐美城市使用華氏", "enum": ["celsius", "fahrenheit"]}
},
"required": ["location", "unit"]
}
}
},
{
"type": "function",
"function": {
"name": "search",
"description": "這是一個類似 Google 的搜尋引擎,關於知識、天氣、股票、電影、小說、百科等等問題,如果你不確定答案就搜尋一下。",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string", "description": "should be a search query, e.g., '2024 南韓 戒嚴'"}
},
"required": ["query"]
}
}
}
]
```
### 3️⃣ 執行工具調用(Tool Calls)
> **⚠️ 注意:system_prompt 可以不用帶,除非是需要時間基準的工具。**
```python
response = client.chat.completions.create(
model=client.models.list().data[0].id,
messages=[
{"role": "system", "content": "記住你的知識截止於 2024/12,今天是 2025/4/7"},
{"role": "user", "content": "台北氣溫如何? 另外,告訴我川普最新關稅政策"},
],
max_tokens=1500,
temperature=0.6,
top_p=0.95,
tools=tools,
tool_choice="auto"
)
print(response.choices[0].message.reasoning_content)
print(response.choices[0].message.tool_calls)
```
#### 🧠 推理內容輸出(僅顯示部分)
> 好的,我需要幫助這個使用者解決他們的問題。他們問了兩件事:首先,臺北市的天氣情況,以及第二,關於川普最近的關稅政策。
> 對於第一部分,他們提到了“臺北”,所以應該呼叫 get_weather 函式…
> 接下來是關於川普的新關稅政策…
> 總結一下,我需要分別進行兩次 API 呼叫,每次都有各自正確填寫的參數…
#### ⚙️ Tool Calls List
```json
[ChatCompletionMessageToolCall(id='chatcmpl-tool-35e74420119349999913a10133b84bd3', function=Function(arguments='{"location": "Taipei", "unit": "celsius"}', name='get_weather'), type='function'), ChatCompletionMessageToolCall(id='chatcmpl-tool-7ffdcb98e59f4134a6171defe7f2e31b', function=Function(arguments='{"query": "Donald Trump latest tariffs policy"}', name='search'), type='function')]
```
### 4️⃣ 產生最終回答
```python
response = client.chat.completions.create(
model=client.models.list().data[0].id,
messages=[
{"role": "system", "content": "記住你的知識截止於 2024/12,今天是 2025/4/7"},
{"role": "user", "content": "台北氣溫如何? 另外,告訴我川普最新關稅政策"},
{
"role": "assistant",
"content": "",
"tool_calls": [
{
"id": response.choices[0].message.tool_calls[0].id,
"type": "function",
"function": {
"name": response.choices[0].message.tool_calls[0].function.name,
"arguments": response.choices[0].message.tool_calls[0].function.arguments
}
},
{
"id": response.choices[0].message.tool_calls[1].id,
"type": "function",
"function": {
"name": response.choices[0].message.tool_calls[1].function.name,
"arguments": response.choices[0].message.tool_calls[1].function.arguments
}
}
]
},
{
"role": "tool",
"content": search(**json.loads(response.choices[0].message.tool_calls[0].function.arguments)),
"tool_call_id": response.choices[0].message.tool_calls[0].id # tool_call_id 必須要帶,才能正確配對 工具 及 tool_call
},
{
"role": "tool",
"content": get_weather(**json.loads(response.choices[0].message.tool_calls[1].function.arguments)),
"tool_call_id": response.choices[0].message.tool_calls[1].id # tool_call_id 必須要帶,才能正確配對 工具 及 tool_call
}
],
max_tokens=1500,
temperature=0.6,
top_p=0.95,
tools=tools,
tool_choice="auto"
)
print(response.choices[0].message.reasoning_content)
print(response.choices[0].message.content)
```
#### 🧠 推理內容輸出(僅顯示部分)
> 首先,我需要處理使用者的查詢,他們要求了解臺北市的當下氣溫以及川普最近的關稅政策…
> 在呼叫了 `get_weather` 後得到了臺北市氣溫為 26 度(攝氏)…
> 接著,使用 `search` 搜尋「川普最新關稅政策 2025」…
> 整合後,我提供如下摘要:
#### 📋 最終輸出內容
```text
以下是您請求的資訊:
**臺北市氣溫**
- 目前的氣溫為 **26°C**(攝氏)
- 天候狀況:晴朗無風
**川普最新關稅政策概述**
1. **對等關稅政策**
- 對 18 個經濟體課徵 50% 的對等關稅
- 自 4 月 5 日起,所有進口產品全面徵收 10% 基本關稅
2. **報復型對等關稅**
- 日本 24%、歐盟 20%
3. **對中國的高額關稅**
- 增加至 54%(原有關稅 + 新增 34%)
4. **特殊案例**
- 加拿大與墨西哥不適用,但其他商品課徵 25%
- 汽車與部分商品的免稅即將到期
5. **對台灣的影響**
- 美國計畫對台灣課徵 32% 關稅,但晶片暫無額外課稅
6. **全球視角**
- 歐盟與日本關稅比例相對較高
```
## Citation
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
```yaml
@misc{twinkleai2025llama3.2f1,
title = {Llama-3.2-3B-F1-Reasoning-Instruct: A Traditional Chinese Instruction-Tuned Reasoning Language Model for Taiwan},
author = {Huang, Liang Hsun and Chen, Min Yi and Lin, Wen Bin and Chuang, Chao Chun and Sung, Dave},
year = {2025},
howpublished = {\url{https://huggingface.co/twinkle-ai/Llama-3.2-3B-F1-Instruct}},
note = {Twinkle AI and APMIC. All authors contributed equally.}
}
```
## Acknowledge
- 特此感謝[國家高速網路與計算中心](https://www.nchc.org.tw/)的指導與 [APMIC](https://www.apmic.ai/) 的算力支援,才得以讓本專案訓利完成。
- 特此致謝黃啟聖老師、許武龍(哈爸)、臺北市立第一女子高級中學物理科陳姿燁老師、[奈視科技](https://nanoseex.com/) CTO Howard、[AIPLUX Technology](https://aiplux.com/)、郭家嘉老師以及所有在資料集製作過程中提供寶貴協助的夥伴。
## Model Card Authors
[Twinkle AI](https://huggingface.co/twinkle-ai)
## Model Card Contact
[Twinkle AI](https://huggingface.co/twinkle-ai) |