File size: 26,273 Bytes
0cbc266 fdfb9a6 5b2bacb fdfb9a6 0cbc266 fdfb9a6 0cbc266 fdfb9a6 fab4c1d fdfb9a6 5b4df96 fdfb9a6 ad12558 fdfb9a6 0cbc266 fdfb9a6 0cbc266 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 |
---
license: apache-2.0
datasets:
- Tongyi-Zhiwen/DocQA-RL-1.6K
base_model:
- deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
tags:
- long-context
- large-reasoning-model
pipeline_tag: text-generation
library_name: transformers
---
# <span style="color: #7FFF7F;">QwenLong-L1-32B GGUF Models</span>
## <span style="color: #7F7FFF;">Model Generation Details</span>
This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`f5cd27b7`](https://github.com/ggerganov/llama.cpp/commit/f5cd27b71da3ac375a04a41643d14fc779a8057b).
## <span style="color: #7FFF7F;">Ultra-Low-Bit Quantization with IQ-DynamicGate (1-2 bit)</span>
Our latest quantization method introduces **precision-adaptive quantization** for ultra-low-bit models (1-2 bit), with benchmark-proven improvements on **Llama-3-8B**. This approach uses layer-specific strategies to preserve accuracy while maintaining extreme memory efficiency.
### **Benchmark Context**
All tests conducted on **Llama-3-8B-Instruct** using:
- Standard perplexity evaluation pipeline
- 2048-token context window
- Same prompt set across all quantizations
### **Method**
- **Dynamic Precision Allocation**:
- First/Last 25% of layers → IQ4_XS (selected layers)
- Middle 50% → IQ2_XXS/IQ3_S (increase efficiency)
- **Critical Component Protection**:
- Embeddings/output layers use Q5_K
- Reduces error propagation by 38% vs standard 1-2bit
### **Quantization Performance Comparison (Llama-3-8B)**
| Quantization | Standard PPL | DynamicGate PPL | Δ PPL | Std Size | DG Size | Δ Size | Std Speed | DG Speed |
|--------------|--------------|------------------|---------|----------|---------|--------|-----------|----------|
| IQ2_XXS | 11.30 | 9.84 | -12.9% | 2.5G | 2.6G | +0.1G | 234s | 246s |
| IQ2_XS | 11.72 | 11.63 | -0.8% | 2.7G | 2.8G | +0.1G | 242s | 246s |
| IQ2_S | 14.31 | 9.02 | -36.9% | 2.7G | 2.9G | +0.2G | 238s | 244s |
| IQ1_M | 27.46 | 15.41 | -43.9% | 2.2G | 2.5G | +0.3G | 206s | 212s |
| IQ1_S | 53.07 | 32.00 | -39.7% | 2.1G | 2.4G | +0.3G | 184s | 209s |
**Key**:
- PPL = Perplexity (lower is better)
- Δ PPL = Percentage change from standard to DynamicGate
- Speed = Inference time (CPU avx2, 2048 token context)
- Size differences reflect mixed quantization overhead
**Key Improvements:**
- 🔥 **IQ1_M** shows massive 43.9% perplexity reduction (27.46 → 15.41)
- 🚀 **IQ2_S** cuts perplexity by 36.9% while adding only 0.2GB
- ⚡ **IQ1_S** maintains 39.7% better accuracy despite 1-bit quantization
**Tradeoffs:**
- All variants have modest size increases (0.1-0.3GB)
- Inference speeds remain comparable (<5% difference)
### **When to Use These Models**
📌 **Fitting models into GPU VRAM**
✔ **Memory-constrained deployments**
✔ **Cpu and Edge Devices** where 1-2bit errors can be tolerated
✔ **Research** into ultra-low-bit quantization
## **Choosing the Right Model Format**
Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**.
### **BF16 (Brain Float 16) – Use if BF16 acceleration is available**
- A 16-bit floating-point format designed for **faster computation** while retaining good precision.
- Provides **similar dynamic range** as FP32 but with **lower memory usage**.
- Recommended if your hardware supports **BF16 acceleration** (check your device's specs).
- Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32.
📌 **Use BF16 if:**
✔ Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs).
✔ You want **higher precision** while saving memory.
✔ You plan to **requantize** the model into another format.
📌 **Avoid BF16 if:**
❌ Your hardware does **not** support BF16 (it may fall back to FP32 and run slower).
❌ You need compatibility with older devices that lack BF16 optimization.
---
### **F16 (Float 16) – More widely supported than BF16**
- A 16-bit floating-point **high precision** but with less of range of values than BF16.
- Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs).
- Slightly lower numerical precision than BF16 but generally sufficient for inference.
📌 **Use F16 if:**
✔ Your hardware supports **FP16** but **not BF16**.
✔ You need a **balance between speed, memory usage, and accuracy**.
✔ You are running on a **GPU** or another device optimized for FP16 computations.
📌 **Avoid F16 if:**
❌ Your device lacks **native FP16 support** (it may run slower than expected).
❌ You have memory limitations.
---
### **Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference**
Quantization reduces model size and memory usage while maintaining as much accuracy as possible.
- **Lower-bit models (Q4_K)** → **Best for minimal memory usage**, may have lower precision.
- **Higher-bit models (Q6_K, Q8_0)** → **Better accuracy**, requires more memory.
📌 **Use Quantized Models if:**
✔ You are running inference on a **CPU** and need an optimized model.
✔ Your device has **low VRAM** and cannot load full-precision models.
✔ You want to reduce **memory footprint** while keeping reasonable accuracy.
📌 **Avoid Quantized Models if:**
❌ You need **maximum accuracy** (full-precision models are better for this).
❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16).
---
### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)**
These models are optimized for **extreme memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint.
- **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **extreme memory efficiency**.
- **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large.
- **Trade-off**: Lower accuracy compared to higher-bit quantizations.
- **IQ3_S**: Small block size for **maximum memory efficiency**.
- **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive.
- **IQ3_M**: Medium block size for better accuracy than **IQ3_S**.
- **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting.
- **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy.
- **Use case**: Best for **low-memory devices** where **Q6_K** is too large.
- **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**.
- **Use case**: Best for **ARM-based devices** or **low-memory environments**.
---
### **Summary Table: Model Format Selection**
| Model Format | Precision | Memory Usage | Device Requirements | Best Use Case |
|--------------|------------|---------------|----------------------|---------------|
| **BF16** | Highest | High | BF16-supported GPU/CPUs | High-speed inference with reduced memory |
| **F16** | High | High | FP16-supported devices | GPU inference when BF16 isn't available |
| **Q4_K** | Medium Low | Low | CPU or Low-VRAM devices | Best for memory-constrained environments |
| **Q6_K** | Medium | Moderate | CPU with more memory | Better accuracy while still being quantized |
| **Q8_0** | High | Moderate | CPU or GPU with enough VRAM | Best accuracy among quantized models |
| **IQ3_XS** | Very Low | Very Low | Ultra-low-memory devices | Extreme memory efficiency and low accuracy |
| **Q4_0** | Low | Low | ARM or low-memory devices | llama.cpp can optimize for ARM devices |
---
## **Included Files & Details**
### `QwenLong-L1-32B-bf16.gguf`
- Model weights preserved in **BF16**.
- Use this if you want to **requantize** the model into a different format.
- Best if your device supports **BF16 acceleration**.
### `QwenLong-L1-32B-f16.gguf`
- Model weights stored in **F16**.
- Use if your device supports **FP16**, especially if BF16 is not available.
### `QwenLong-L1-32B-bf16-q8_0.gguf`
- **Output & embeddings** remain in **BF16**.
- All other layers quantized to **Q8_0**.
- Use if your device supports **BF16** and you want a quantized version.
### `QwenLong-L1-32B-f16-q8_0.gguf`
- **Output & embeddings** remain in **F16**.
- All other layers quantized to **Q8_0**.
### `QwenLong-L1-32B-q4_k.gguf`
- **Output & embeddings** quantized to **Q8_0**.
- All other layers quantized to **Q4_K**.
- Good for **CPU inference** with limited memory.
### `QwenLong-L1-32B-q4_k_s.gguf`
- Smallest **Q4_K** variant, using less memory at the cost of accuracy.
- Best for **very low-memory setups**.
### `QwenLong-L1-32B-q6_k.gguf`
- **Output & embeddings** quantized to **Q8_0**.
- All other layers quantized to **Q6_K** .
### `QwenLong-L1-32B-q8_0.gguf`
- Fully **Q8** quantized model for better accuracy.
- Requires **more memory** but offers higher precision.
### `QwenLong-L1-32B-iq3_xs.gguf`
- **IQ3_XS** quantization, optimized for **extreme memory efficiency**.
- Best for **ultra-low-memory devices**.
### `QwenLong-L1-32B-iq3_m.gguf`
- **IQ3_M** quantization, offering a **medium block size** for better accuracy.
- Suitable for **low-memory devices**.
### `QwenLong-L1-32B-q4_0.gguf`
- Pure **Q4_0** quantization, optimized for **ARM devices**.
- Best for **low-memory environments**.
- Prefer IQ4_NL for better accuracy.
# <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>
❤ **Please click "Like" if you find this useful!**
Help me test my **AI-Powered Network Monitor Assistant** with **quantum-ready security checks**:
👉 [Free Network Monitor](https://readyforquantum.com/dashboard/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme)
💬 **How to test**:
Choose an **AI assistant type**:
- `TurboLLM` (GPT-4o-mini)
- `HugLLM` (Hugginface Open-source)
- `TestLLM` (Experimental CPU-only)
### **What I’m Testing**
I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:
- **Function calling** against live network services
- **How small can a model go** while still handling:
- Automated **Nmap scans**
- **Quantum-readiness checks**
- **Network Monitoring tasks**
🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads):
- ✅ **Zero-configuration setup**
- ⏳ 30s load time (slow inference but **no API costs**)
- 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!
### **Other Assistants**
🟢 **TurboLLM** – Uses **gpt-4o-mini** for:
- **Create custom cmd processors to run .net code on Free Network Monitor Agents**
- **Real-time network diagnostics and monitoring**
- **Security Audits**
- **Penetration testing** (Nmap/Metasploit)
🔵 **HugLLM** – Latest Open-source models:
- 🌐 Runs on Hugging Face Inference API
### 💡 **Example commands to you could test**:
1. `"Give me info on my websites SSL certificate"`
2. `"Check if my server is using quantum safe encyption for communication"`
3. `"Run a comprehensive security audit on my server"`
4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Free Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution!
### Final Word
I fund the servers used to create these model files, run the Free Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Free Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful.
If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone.
I'm also open to job opportunities or sponsorship.
Thank you! 😊
# QwenLong-L1: Towards Long-Context Large Reasoning Models with Reinforcement Learning
<p align="center" width="100%">
</p>
<div id="top" align="center">
-----------------------------
[](https://opensource.org/licenses/Apache-2.0)
[](https://arxiv.org/abs/2505.17667)
[](https://github.com/Tongyi-Zhiwen/QwenLong-L1)
[](https://modelscope.cn/models/iic/QwenLong-L1-32B)
[](https://huggingface.co/Tongyi-Zhiwen/QwenLong-L1-32B)
<!-- **Authors:** -->
_**Fanqi Wan, Weizhou Shen, Shengyi Liao, Yingcheng Shi, Chenliang Li,**_
_**Ziyi Yang, Ji Zhang, Fei Huang, Jingren Zhou, Ming Yan**_
<!-- **Affiliations:** -->
_Tongyi Lab, Alibaba Group_
<p align="center">
<img src="./assets/fig1.png" width="100%"> <br>
</p>
</div>
## 🎉 News
- **May 28, 2025:** 🔥 We release [🤗 QwenLong-L1-32B-AWQ](https://huggingface.co/Tongyi-Zhiwen/QwenLong-L1-32B-AWQ), which has undergone AWQ int4 quantization using the ms-swift framework.
- **May 26, 2025:** 🔥 We release [🤗 QwenLong-L1-32B](https://huggingface.co/Tongyi-Zhiwen/QwenLong-L1-32B), which is the first long-context LRM trained with reinforcement learning for long-context reasoning. Experiments on seven long-context DocQA benchmarks demonstrate that **QwenLong-L1-32B outperforms flagship LRMs like OpenAI-o3-mini and Qwen3-235B-A22B, achieving performance on par with Claude-3.7-Sonnet-Thinking**, demonstrating leading performance among state-of-the-art LRMs.
- **May 26, 2025:** 🔥 We release [🤗 DocQA-RL-1.6K](https://huggingface.co/datasets/Tongyi-Zhiwen/DocQA-RL-1.6K), which is a specialized RL training dataset comprising 1.6K document question answering (DocQA) problems spanning mathematical, logical, and multi-hop reasoning domains.
## 📚 Introduction
In this work, we propose QwenLong-L1, a novel reinforcement learning (RL) framework designed to facilitate the transition of LRMs from short-context proficiency to robust long-context generalization. In our preliminary experiments, we illustrate the differences between the training dynamics of short-context and long-context reasoning RL.
<p align="center">
<img src="./assets/fig2.png" width="100%"> <br>
</p>
Our framework enhances short-context LRMs through progressive context scaling during RL training. The framework comprises three core components: a warm-up supervised fine-tuning (SFT) phase to initialize a robust policy, a curriculum-guided RL phase that facilitates stable adaptation from short to long contexts, and a difficulty-aware retrospective sampling mechanism that adjusts training complexity across stages to incentivize policy exploration. Leveraging recent RL algorithms, including GRPO and DAPO, our framework integrates hybrid reward functions combining rule-based and model-based binary outcome rewards to balance precision and recall. Through strategic utilization of group relative advantages during policy optimization, it guides LRMs to learn effective reasoning patterns essential for robust long-context grounding and superior reasoning capabilities.
<p align="center">
<img src="./assets/fig3.png" width="100%"> <br>
</p>
## 🎯 Model Release
We release [🤗 QwenLong-L1-32B](https://huggingface.co/Tongyi-Zhiwen/QwenLong-L1-32B), which is the first long-context LRM trained with reinforcement learniing for long-context reasoning. Experiments on seven long-context DocQA benchmarks demonstrate that **QwenLong-L1-32B outperforms flagship LRMs like OpenAI-o3-mini and Qwen3-235B-A22B, achieving performance on par with Claude-3.7-Sonnet-Thinking**, demonstrating leading performance among state-of-the-art LRMs.
Here are the evaluation results.
<p align="center">
<img src="./assets/tab4.png" width="100%"> <br>
</p>
## 🛠️ Requirements
```bash
# Create the conda environment
conda create -n qwenlongl1 python==3.10
conda activate qwenlongl1
# Install requirements
pip3 install -r requirements.txt
# Install verl
cd verl
pip3 install -e .
# Install vLLM
pip3 install vllm==0.7.3
# Install flash-attn
pip3 install flash-attn --no-build-isolation
```
## 🚀 Quick Start
Here's how you can run the model using the 🤗 Transformers:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Tongyi-Zhiwen/QwenLong-L1-32B"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
template = """Please read the following text and answer the question below.
<text>
$DOC$
</text>
$Q$
Format your response as follows: "Therefore, the answer is (insert answer here)"."""
context = "<YOUR_CONTEXT_HERE>"
question = "<YOUR_QUESTION_HERE>"
prompt = template.replace('$DOC$', context.strip()).replace('$Q$', question.strip())
messages = [
# {"role": "system", "content": "You are QwenLong-L1, created by Alibaba Tongyi Lab. You are a helpful assistant."}, # Use system prompt to define identity when needed.
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=10000,
temperature=0.7,
top_p=0.95
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151649 (</think>)
index = len(output_ids) - output_ids[::-1].index(151649)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content)
print("content:", content)
```
## ♾️ Processing Long Documents
For input where the total length (including both input and output) significantly exceeds 32,768 tokens, we recommend using RoPE scaling techniques to handle long texts effectively. We have validated the model's performance on context lengths of up to 131,072 tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method.
YaRN is currently supported by several inference frameworks, e.g., `transformers` and `llama.cpp` for local use, `vllm` and `sglang` for deployment. In general, there are two approaches to enabling YaRN for supported frameworks:
- Modifying the model files:
In the `config.json` file, add the `rope_scaling` fields:
```json
{
...,
"rope_scaling": {
"rope_type": "yarn",
"factor": 4.0,
"original_max_position_embeddings": 32768
}
}
```
For `llama.cpp`, you need to regenerate the GGUF file after the modification.
- Passing command line arguments:
For `vllm`, you can use
```shell
vllm serve ... --rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072
```
For `sglang`, you can use
```shell
python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}'
```
For `llama-server` from `llama.cpp`, you can use
```shell
llama-server ... --rope-scaling yarn --rope-scale 4 --yarn-orig-ctx 32768
```
> [!IMPORTANT]
> If you encounter the following warning
> ```
> Unrecognized keys in `rope_scaling` for 'rope_type'='yarn': {'original_max_position_embeddings'}
> ```
> please upgrade `transformers>=4.51.0`.
> [!NOTE]
> All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.**
> We advise adding the `rope_scaling` configuration only when processing long contexts is required.
> It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 65,536 tokens, it would be better to set `factor` as 2.0.
> [!NOTE]
If the average context length does not exceed 32,768 tokens, we do not recommend enabling YaRN in this scenario, as it may potentially degrade model performance.
## 🗂️ Dataset
To construct a challenging RL dataset for verifiable long-context reasoning, we develop [🤗 DocQA-RL-1.6K](https://huggingface.co/datasets/Tongyi-Zhiwen/DocQA-RL-1.6K), which comprises 1.6K DocQA problems across three reasoning domains:
(1) Mathematical Reasoning: We use 600 problems from the DocMath dataset, requiring numerical reasoning across long and specialized documents such as financial reports. For DocMath, we sample 75% items from each subset from its valid split for training and 25% for evaluation;
(2) Logical Reasoning: We employ DeepSeek-R1 to synthesize 600 multi-choice questions requiring logic analysis of real-world documents spanning legal, financial, insurance, and production domains from our curated collection;
(3) Multi-Hop Reasoning: We sample 200 examples from MultiHopRAG and 200 examples from Musique, emphasizing cross-document reasoning.
Please download and put the following datasets in `./datasets/` for training and evaluation.
RL training data: [🤗 DocQA-RL-1.6K](https://huggingface.co/datasets/Tongyi-Zhiwen/DocQA-RL-1.6K).
Evaluation data: [🤗 docmath](https://huggingface.co/datasets/Tongyi-Zhiwen/docmath), [🤗 frames](https://huggingface.co/datasets/Tongyi-Zhiwen/frames), [🤗 longbench](https://huggingface.co/datasets/Tongyi-Zhiwen/longbench).
## 💻 Training
We provide the basic demo training code for single stage RL traininig with DAPO.
First, we should start a local verifier.
```bash
export CUDA_VISIBLE_DEVICES=0
vllm serve "Qwen/Qwen2.5-1.5B-Instruct" \
--host 0.0.0.0 \
--port 23547
```
Then, we start RL training with 4 nodes.
```bash
export PROJ_DIR="<YOUR_PROJ_DIR_HERE>"
export MASTER_IP="<YOUR_MASTER_IP_HERE>" # ray master ip
export NNODES=4 # total GPU nodes
export NODE_RANK=${RANK} # rank of current node
export PORT=6382
export WANDB_API_KEY="<YOUR_WANDB_API_KEY_HERE>"
export WANDB_PROJECT="QwenLong-L1"
export LLM_JUDGE=Y # 'Y': LLM JUDGE, 'N': RULE BASED
export VLLM_ATTENTION_BACKEND=FLASH_ATTN
# verifier
export VERIFIER_PATH="Qwen/Qwen2.5-1.5B-Instruct"
export VERIFIER_HOST="<YOUR_VERIFIER_HOST_HERE>"
export VERIFIER_PORT="23547"
ray_start_retry() {
while true; do
ray start --address="${MASTER_IP}:${PORT}"
if [ $? -eq 0 ]; then
break
fi
echo "Failed to connect to master, retrying in 5 seconds..."
sleep 5
done
}
check_ray_status() {
until ray status >/dev/null 2>&1; do
echo "Waiting for Ray cluster to be ready..."
sleep 5
done
}
if [ "$RANK" == "0" ]; then
echo "Starting HEAD node..."
ray start --head --port=${PORT}
check_ray_status
echo "Ray head node started successfully"
else
echo "Starting WORKER node..."
ray_start_retry
check_ray_status
echo "Successfully joined Ray cluster"
fi
if [ "$RANK" == "0" ]; then
bash ${PROJ_DIR}/scripts/rl_4nodes_dapo.sh 2>&1 | tee ${PROJ_DIR}/logs/rl_log_$(date +%Y%m%d_%H%M%S).txt &
else
sleep 30d
fi
wait
```
## 📊 Evaluation
We conduct evaluation on seven long-context DocQA benchmarks, including multi-hop reasoning benchmarks such as 2WikiMultihopQA, HotpotQA, Musique, NarrativeQA, Qasper, and Frames as well as mathematical reasoning benchmarks like DocMath. We report the maximum of exact match and LLM-judged accuracy as the final score, aligned with the reward function in our RL training process. We use DeepSeek-V3 as the judge model with a temperature of 0.0 to provide a reliable evaluation.
```bash
# Step 1. Serve the model for evaluation
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
MODEL_NAME="QwenLong-L1-32B"
MODEL_PATH="Tongyi-Zhiwen/QwenLong-L1-32B"
vllm serve ${MODEL_PATH} \
--port 23547 \
--api-key "token-abc123" \
--tensor-parallel-size 8 \
--gpu-memory-utilization 0.95 \
--max_model_len 131072 \
--trust-remote-code
# Step 2. Generate model responses for each dataset
export SERVE_HOST="<YOUR_SERVE_HOST_HERE>" # e.g., 127.0.0.1
export SERVE_PORT="23547"
PROJ_DIR="<YOUR_PROJ_DIR_HERE>"
DATA="<YOUR_DATA_HERE>" # e.g., docmath, frames, 2wikimqa, hotpotqa, musique, narrativeqa, pasper
python ${PROJ_DIR}/eval/${DATA}.py \
--save_dir "${PROJ_DIR}/eval/results/${DATA}" \
--save_file "${MODEL_NAME}" \
--model "${MODEL_PATH}" \
--tokenizer "${MODEL_PATH}" \
--n_proc 16 \
--api "openai"
# Step 3. Verify model responses for each dataset
export VERIFIER_API="<YOUR_API_KEY_HERE>"
export VERIFIER_URL="https://api.deepseek.com/v1"
PROJ_DIR="<YOUR_PROJ_DIR_HERE>"
DATA="<YOUR_DATA_HERE>" # e.g., docmath, frames, 2wikimqa, hotpotqa, musique, narrativeqa, pasper
python ${PROJ_DIR}/eval/${DATA}_verify.py \
--save_dir "${PROJ_DIR}/results/${DATA}" \
--save_file "${MODEL_NAME}" \
--judge_model "deepseek-chat" \
--batch_size 20
```
## 📝 Citation
If you find this work is relevant with your research or applications, please feel free to cite our work!
```
@article{wan2025qwenlongl1,
title={QwenLong-L1: : Towards Long-Context Large Reasoning Models with Reinforcement Learning},
author={Fanqi Wan, Weizhou Shen, Shengyi Liao, Yingcheng Shi, Chenliang Li, Ziyi Yang, Ji Zhang, Fei Huang, Jingren Zhou, Ming Yan},
journal={arXiv preprint arXiv:2505.17667},
year={2025}
}
``` |