File size: 26,273 Bytes
0cbc266
fdfb9a6
5b2bacb
 
fdfb9a6
 
0cbc266
 
 
fdfb9a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cbc266
 
fdfb9a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fab4c1d
fdfb9a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b4df96
fdfb9a6
 
 
 
 
 
 
 
 
 
ad12558
 
 
 
 
 
 
 
 
 
 
fdfb9a6
 
0cbc266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdfb9a6
 
0cbc266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
---
license: apache-2.0
datasets:
- Tongyi-Zhiwen/DocQA-RL-1.6K
base_model:
- deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
tags:
- long-context
- large-reasoning-model
pipeline_tag: text-generation
library_name: transformers
---

# <span style="color: #7FFF7F;">QwenLong-L1-32B GGUF Models</span>


## <span style="color: #7F7FFF;">Model Generation Details</span>

This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`f5cd27b7`](https://github.com/ggerganov/llama.cpp/commit/f5cd27b71da3ac375a04a41643d14fc779a8057b).




## <span style="color: #7FFF7F;">Ultra-Low-Bit Quantization with IQ-DynamicGate (1-2 bit)</span>

Our latest quantization method introduces **precision-adaptive quantization** for ultra-low-bit models (1-2 bit), with benchmark-proven improvements on **Llama-3-8B**. This approach uses layer-specific strategies to preserve accuracy while maintaining extreme memory efficiency.

### **Benchmark Context**
All tests conducted on **Llama-3-8B-Instruct** using:
- Standard perplexity evaluation pipeline
- 2048-token context window
- Same prompt set across all quantizations

### **Method**
- **Dynamic Precision Allocation**:  
  - First/Last 25% of layers → IQ4_XS (selected layers)  
  - Middle 50% → IQ2_XXS/IQ3_S (increase efficiency)  
- **Critical Component Protection**:  
  - Embeddings/output layers use Q5_K  
  - Reduces error propagation by 38% vs standard 1-2bit  

### **Quantization Performance Comparison (Llama-3-8B)**

| Quantization | Standard PPL | DynamicGate PPL | Δ PPL   | Std Size | DG Size | Δ Size | Std Speed | DG Speed |
|--------------|--------------|------------------|---------|----------|---------|--------|-----------|----------|
| IQ2_XXS      | 11.30        | 9.84             | -12.9%  | 2.5G     | 2.6G    | +0.1G  | 234s      | 246s     |
| IQ2_XS       | 11.72        | 11.63            | -0.8%   | 2.7G     | 2.8G    | +0.1G  | 242s      | 246s     |
| IQ2_S        | 14.31        | 9.02             | -36.9%  | 2.7G     | 2.9G    | +0.2G  | 238s      | 244s     |
| IQ1_M        | 27.46        | 15.41            | -43.9%  | 2.2G     | 2.5G    | +0.3G  | 206s      | 212s     |
| IQ1_S        | 53.07        | 32.00            | -39.7%  | 2.1G     | 2.4G    | +0.3G  | 184s      | 209s     |

**Key**:
- PPL = Perplexity (lower is better)
- Δ PPL = Percentage change from standard to DynamicGate
- Speed = Inference time (CPU avx2, 2048 token context)
- Size differences reflect mixed quantization overhead

**Key Improvements:**
- 🔥 **IQ1_M** shows massive 43.9% perplexity reduction (27.46 → 15.41)
- 🚀 **IQ2_S** cuts perplexity by 36.9% while adding only 0.2GB
- ⚡ **IQ1_S** maintains 39.7% better accuracy despite 1-bit quantization

**Tradeoffs:**
- All variants have modest size increases (0.1-0.3GB)
- Inference speeds remain comparable (<5% difference)


### **When to Use These Models**
📌 **Fitting models into GPU VRAM**

**Memory-constrained deployments**

**Cpu and Edge Devices** where 1-2bit errors can be tolerated 
 
**Research** into ultra-low-bit quantization



## **Choosing the Right Model Format**  

Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**.  

### **BF16 (Brain Float 16) – Use if BF16 acceleration is available**  
- A 16-bit floating-point format designed for **faster computation** while retaining good precision.  
- Provides **similar dynamic range** as FP32 but with **lower memory usage**.  
- Recommended if your hardware supports **BF16 acceleration** (check your device's specs).  
- Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32.  

📌 **Use BF16 if:**  
✔ Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs).  
✔ You want **higher precision** while saving memory.  
✔ You plan to **requantize** the model into another format.  

📌 **Avoid BF16 if:**  
❌ Your hardware does **not** support BF16 (it may fall back to FP32 and run slower).  
❌ You need compatibility with older devices that lack BF16 optimization.  

---

### **F16 (Float 16) – More widely supported than BF16**  
- A 16-bit floating-point **high precision** but with less of range of values than BF16. 
- Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs).  
- Slightly lower numerical precision than BF16 but generally sufficient for inference.  

📌 **Use F16 if:**  
✔ Your hardware supports **FP16** but **not BF16**.  
✔ You need a **balance between speed, memory usage, and accuracy**.  
✔ You are running on a **GPU** or another device optimized for FP16 computations.  

📌 **Avoid F16 if:**  
❌ Your device lacks **native FP16 support** (it may run slower than expected).  
❌ You have memory limitations.  

---

### **Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference**  
Quantization reduces model size and memory usage while maintaining as much accuracy as possible.  
- **Lower-bit models (Q4_K)****Best for minimal memory usage**, may have lower precision.  
- **Higher-bit models (Q6_K, Q8_0)****Better accuracy**, requires more memory.  

📌 **Use Quantized Models if:**  
✔ You are running inference on a **CPU** and need an optimized model.  
✔ Your device has **low VRAM** and cannot load full-precision models.  
✔ You want to reduce **memory footprint** while keeping reasonable accuracy.  

📌 **Avoid Quantized Models if:**  
❌ You need **maximum accuracy** (full-precision models are better for this).  
❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16).  

---

### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)**  
These models are optimized for **extreme memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint.  

- **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **extreme memory efficiency**.  
  - **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large.  
  - **Trade-off**: Lower accuracy compared to higher-bit quantizations.  

- **IQ3_S**: Small block size for **maximum memory efficiency**.  
  - **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive.  

- **IQ3_M**: Medium block size for better accuracy than **IQ3_S**.  
  - **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting.  

- **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy.  
  - **Use case**: Best for **low-memory devices** where **Q6_K** is too large.  

- **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**.  
  - **Use case**: Best for **ARM-based devices** or **low-memory environments**.  

---

### **Summary Table: Model Format Selection**  

| Model Format  | Precision  | Memory Usage  | Device Requirements  | Best Use Case  |  
|--------------|------------|---------------|----------------------|---------------|  
| **BF16**     | Highest    | High          | BF16-supported GPU/CPUs  | High-speed inference with reduced memory |  
| **F16**      | High       | High          | FP16-supported devices | GPU inference when BF16 isn't available |  
| **Q4_K**     | Medium Low | Low           | CPU or Low-VRAM devices | Best for memory-constrained environments |  
| **Q6_K**     | Medium     | Moderate      | CPU with more memory | Better accuracy while still being quantized |  
| **Q8_0**     | High       | Moderate      | CPU or GPU with enough VRAM | Best accuracy among quantized models |  
| **IQ3_XS**   | Very Low   | Very Low      | Ultra-low-memory devices | Extreme memory efficiency and low accuracy |  
| **Q4_0**     | Low        | Low           | ARM or low-memory devices | llama.cpp can optimize for ARM devices |  

---

## **Included Files & Details**  

### `QwenLong-L1-32B-bf16.gguf`  
- Model weights preserved in **BF16**.  
- Use this if you want to **requantize** the model into a different format.  
- Best if your device supports **BF16 acceleration**.  

### `QwenLong-L1-32B-f16.gguf`  
- Model weights stored in **F16**.  
- Use if your device supports **FP16**, especially if BF16 is not available.  

### `QwenLong-L1-32B-bf16-q8_0.gguf`  
- **Output & embeddings** remain in **BF16**.  
- All other layers quantized to **Q8_0**.  
- Use if your device supports **BF16** and you want a quantized version.  

### `QwenLong-L1-32B-f16-q8_0.gguf`  
- **Output & embeddings** remain in **F16**.  
- All other layers quantized to **Q8_0**.    

### `QwenLong-L1-32B-q4_k.gguf`  
- **Output & embeddings** quantized to **Q8_0**.  
- All other layers quantized to **Q4_K**.  
- Good for **CPU inference** with limited memory.  

### `QwenLong-L1-32B-q4_k_s.gguf`  
- Smallest **Q4_K** variant, using less memory at the cost of accuracy.  
- Best for **very low-memory setups**.  

### `QwenLong-L1-32B-q6_k.gguf`  
- **Output & embeddings** quantized to **Q8_0**.  
- All other layers quantized to **Q6_K** .  

### `QwenLong-L1-32B-q8_0.gguf`  
- Fully **Q8** quantized model for better accuracy.  
- Requires **more memory** but offers higher precision.  

### `QwenLong-L1-32B-iq3_xs.gguf`  
- **IQ3_XS** quantization, optimized for **extreme memory efficiency**.  
- Best for **ultra-low-memory devices**.  

### `QwenLong-L1-32B-iq3_m.gguf`  
- **IQ3_M** quantization, offering a **medium block size** for better accuracy.  
- Suitable for **low-memory devices**.  

### `QwenLong-L1-32B-q4_0.gguf`  
- Pure **Q4_0** quantization, optimized for **ARM devices**.  
- Best for **low-memory environments**.
- Prefer IQ4_NL for better accuracy.

# <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>
❤ **Please click "Like" if you find this useful!**  
Help me test my **AI-Powered Network Monitor Assistant** with **quantum-ready security checks**:  
👉 [Free Network Monitor](https://readyforquantum.com/dashboard/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme)  

💬 **How to test**:  
 Choose an **AI assistant type**:  
   - `TurboLLM` (GPT-4o-mini)  
   - `HugLLM` (Hugginface Open-source)  
   - `TestLLM` (Experimental CPU-only)  

### **What I’m Testing**  
I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:  
- **Function calling** against live network services  
- **How small can a model go** while still handling:  
  - Automated **Nmap scans**  
  - **Quantum-readiness checks**  
  - **Network Monitoring tasks**  

🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads):  
-**Zero-configuration setup**  
- ⏳ 30s load time (slow inference but **no API costs**)  
- 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!  

### **Other Assistants**  
🟢 **TurboLLM** – Uses **gpt-4o-mini** for: 
- **Create custom cmd processors to run .net code on Free Network Monitor Agents**
- **Real-time network diagnostics and monitoring**
- **Security Audits**
- **Penetration testing** (Nmap/Metasploit)  
  

🔵 **HugLLM** – Latest Open-source models:  
- 🌐 Runs on Hugging Face Inference API  

### 💡 **Example commands to you could test**:  
1. `"Give me info on my websites SSL certificate"`  
2. `"Check if my server is using quantum safe encyption for communication"`  
3. `"Run a comprehensive security audit on my server"`
4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Free Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution!

### Final Word

I fund the servers used to create these model files, run the Free Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Free Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful.

If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone.

I'm also open to job opportunities or sponsorship.

Thank you! 😊




# QwenLong-L1: Towards Long-Context Large Reasoning Models with Reinforcement Learning
<p align="center" width="100%">
</p>

<div id="top" align="center">

-----------------------------
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![arXiv](https://img.shields.io/badge/arXiv-2505.17667-b31b1b.svg)](https://arxiv.org/abs/2505.17667)
[![GitHub](https://img.shields.io/badge/GitHub-QwenLongL1-4b32c3?logo=github)](https://github.com/Tongyi-Zhiwen/QwenLong-L1)
[![ModelScope](https://img.shields.io/badge/🤖%20ModelScope-purple)](https://modelscope.cn/models/iic/QwenLong-L1-32B)
[![HuggingFace](https://img.shields.io/badge/🤗%20HuggingFace-yellow)](https://huggingface.co/Tongyi-Zhiwen/QwenLong-L1-32B)

<!-- **Authors:** -->

_**Fanqi Wan, Weizhou Shen, Shengyi Liao, Yingcheng Shi, Chenliang Li,**_

_**Ziyi Yang, Ji Zhang, Fei Huang, Jingren Zhou, Ming Yan**_


<!-- **Affiliations:** -->


_Tongyi Lab, Alibaba Group_

<p align="center">
    <img src="./assets/fig1.png" width="100%"> <br>
</p>


</div>

## 🎉 News

- **May 28, 2025:** 🔥 We release [🤗 QwenLong-L1-32B-AWQ](https://huggingface.co/Tongyi-Zhiwen/QwenLong-L1-32B-AWQ), which has undergone AWQ int4 quantization using the ms-swift framework.

- **May 26, 2025:** 🔥 We release [🤗 QwenLong-L1-32B](https://huggingface.co/Tongyi-Zhiwen/QwenLong-L1-32B), which is the first long-context LRM trained with reinforcement learning for long-context reasoning. Experiments on seven long-context DocQA benchmarks demonstrate that **QwenLong-L1-32B outperforms flagship LRMs like OpenAI-o3-mini and Qwen3-235B-A22B, achieving performance on par with Claude-3.7-Sonnet-Thinking**, demonstrating leading performance among state-of-the-art LRMs.

- **May 26, 2025:** 🔥 We release [🤗 DocQA-RL-1.6K](https://huggingface.co/datasets/Tongyi-Zhiwen/DocQA-RL-1.6K), which is a specialized RL training dataset comprising 1.6K document question answering (DocQA) problems spanning mathematical, logical, and multi-hop reasoning domains.


## 📚 Introduction

In this work, we propose QwenLong-L1, a novel reinforcement learning (RL) framework designed to facilitate the transition of LRMs from short-context proficiency to robust long-context generalization. In our preliminary experiments, we illustrate the differences between the training dynamics of short-context and long-context reasoning RL.

<p align="center">
    <img src="./assets/fig2.png" width="100%"> <br>
</p>

Our framework enhances short-context LRMs through progressive context scaling during RL training. The framework comprises three core components: a warm-up supervised fine-tuning (SFT) phase to initialize a robust policy, a curriculum-guided RL phase that facilitates stable adaptation from short to long contexts, and a difficulty-aware retrospective sampling mechanism that adjusts training complexity across stages to incentivize policy exploration. Leveraging recent RL algorithms, including GRPO and DAPO, our framework integrates hybrid reward functions combining rule-based and model-based binary outcome rewards to balance precision and recall. Through strategic utilization of group relative advantages during policy optimization, it guides LRMs to learn effective reasoning patterns essential for robust long-context grounding and superior reasoning capabilities. 

<p align="center">
    <img src="./assets/fig3.png" width="100%"> <br>
</p>


## 🎯 Model Release

We release [🤗 QwenLong-L1-32B](https://huggingface.co/Tongyi-Zhiwen/QwenLong-L1-32B), which is the first long-context LRM trained with reinforcement learniing for long-context reasoning. Experiments on seven long-context DocQA benchmarks demonstrate that **QwenLong-L1-32B outperforms flagship LRMs like OpenAI-o3-mini and Qwen3-235B-A22B, achieving performance on par with Claude-3.7-Sonnet-Thinking**, demonstrating leading performance among state-of-the-art LRMs.

Here are the evaluation results.

<p align="center">
    <img src="./assets/tab4.png" width="100%"> <br>
</p>

## 🛠️ Requirements

```bash
# Create the conda environment
conda create -n qwenlongl1 python==3.10
conda activate qwenlongl1

# Install requirements
pip3 install -r requirements.txt

# Install verl
cd verl
pip3 install -e .

# Install vLLM
pip3 install vllm==0.7.3 

# Install flash-attn
pip3 install flash-attn --no-build-isolation
```

## 🚀 Quick Start

Here's how you can run the model using the 🤗 Transformers:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "Tongyi-Zhiwen/QwenLong-L1-32B"

# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)

# prepare the model input
template = """Please read the following text and answer the question below.

<text>
$DOC$
</text>

$Q$

Format your response as follows: "Therefore, the answer is (insert answer here)"."""
context = "<YOUR_CONTEXT_HERE>" 
question = "<YOUR_QUESTION_HERE>"
prompt = template.replace('$DOC$', context.strip()).replace('$Q$', question.strip())
messages = [
    # {"role": "system", "content": "You are QwenLong-L1, created by Alibaba Tongyi Lab. You are a helpful assistant."},  # Use system prompt to define identity when needed.
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

# conduct text completion
generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=10000,
    temperature=0.7,
    top_p=0.95
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() 

# parsing thinking content
try:
    # rindex finding 151649 (</think>)
    index = len(output_ids) - output_ids[::-1].index(151649)
except ValueError:
    index = 0

thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")

print("thinking content:", thinking_content)
print("content:", content)
```

## ♾️ Processing Long Documents

For input where the total length (including both input and output) significantly exceeds 32,768 tokens, we recommend using RoPE scaling techniques to handle long texts effectively. We have validated the model's performance on context lengths of up to 131,072 tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method.

YaRN is currently supported by several inference frameworks, e.g., `transformers` and `llama.cpp` for local use, `vllm` and `sglang` for deployment. In general, there are two approaches to enabling YaRN for supported frameworks:

- Modifying the model files:
  In the `config.json` file, add the `rope_scaling` fields:
    ```json
    {
        ...,
        "rope_scaling": {
            "rope_type": "yarn",
            "factor": 4.0,
            "original_max_position_embeddings": 32768
        }
    }
    ```
  For `llama.cpp`, you need to regenerate the GGUF file after the modification.
- Passing command line arguments:

  For `vllm`, you can use
    ```shell
    vllm serve ... --rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072  
    ```
  For `sglang`, you can use
    ```shell
    python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}'
    ```
  For `llama-server` from `llama.cpp`, you can use
    ```shell
    llama-server ... --rope-scaling yarn --rope-scale 4 --yarn-orig-ctx 32768
    ```
> [!IMPORTANT]
> If you encounter the following warning
> ```
> Unrecognized keys in `rope_scaling` for 'rope_type'='yarn': {'original_max_position_embeddings'}
> ```
> please upgrade `transformers>=4.51.0`.

> [!NOTE]
> All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.**
> We advise adding the `rope_scaling` configuration only when processing long contexts is required. 
> It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 65,536 tokens, it would be better to set `factor` as 2.0. 

> [!NOTE]
If the average context length does not exceed 32,768 tokens, we do not recommend enabling YaRN in this scenario, as it may potentially degrade model performance.

## 🗂️ Dataset

To construct a challenging RL dataset for verifiable long-context reasoning, we develop [🤗 DocQA-RL-1.6K](https://huggingface.co/datasets/Tongyi-Zhiwen/DocQA-RL-1.6K), which comprises 1.6K DocQA problems across three reasoning domains: 

(1) Mathematical Reasoning: We use 600 problems from the DocMath dataset, requiring numerical reasoning across long and specialized documents such as financial reports. For DocMath, we sample 75% items from each subset from its valid split for training and 25% for evaluation; 

(2) Logical Reasoning: We employ DeepSeek-R1 to synthesize 600 multi-choice questions requiring logic analysis of real-world documents spanning legal, financial, insurance, and production domains from our curated collection;

(3) Multi-Hop Reasoning: We sample 200 examples from MultiHopRAG and 200 examples from Musique, emphasizing cross-document reasoning.

Please download and put the following datasets in `./datasets/` for training and evaluation.

RL training data: [🤗 DocQA-RL-1.6K](https://huggingface.co/datasets/Tongyi-Zhiwen/DocQA-RL-1.6K).

Evaluation data: [🤗 docmath](https://huggingface.co/datasets/Tongyi-Zhiwen/docmath), [🤗 frames](https://huggingface.co/datasets/Tongyi-Zhiwen/frames), [🤗 longbench](https://huggingface.co/datasets/Tongyi-Zhiwen/longbench).

## 💻 Training

We provide the basic demo training code for single stage RL traininig with DAPO.

First, we should start a local verifier.
```bash
export CUDA_VISIBLE_DEVICES=0

vllm serve "Qwen/Qwen2.5-1.5B-Instruct" \
    --host 0.0.0.0 \
    --port 23547
```

Then, we start RL training with 4 nodes.
```bash
export PROJ_DIR="<YOUR_PROJ_DIR_HERE>"
export MASTER_IP="<YOUR_MASTER_IP_HERE>" # ray master ip
export NNODES=4 # total GPU nodes
export NODE_RANK=${RANK} # rank of current node
export PORT=6382
export WANDB_API_KEY="<YOUR_WANDB_API_KEY_HERE>"
export WANDB_PROJECT="QwenLong-L1"
export LLM_JUDGE=Y # 'Y': LLM JUDGE, 'N': RULE BASED
export VLLM_ATTENTION_BACKEND=FLASH_ATTN
# verifier
export VERIFIER_PATH="Qwen/Qwen2.5-1.5B-Instruct"
export VERIFIER_HOST="<YOUR_VERIFIER_HOST_HERE>"
export VERIFIER_PORT="23547"

ray_start_retry() {
    while true; do
        ray start --address="${MASTER_IP}:${PORT}"
        if [ $? -eq 0 ]; then
            break
        fi
        echo "Failed to connect to master, retrying in 5 seconds..."
        sleep 5
    done
}

check_ray_status() {
    until ray status >/dev/null 2>&1; do
        echo "Waiting for Ray cluster to be ready..."
        sleep 5
    done
}

if [ "$RANK" == "0" ]; then
    echo "Starting HEAD node..."
    ray start --head --port=${PORT}
    
    check_ray_status
    echo "Ray head node started successfully"

else
    echo "Starting WORKER node..."
    ray_start_retry
    
    check_ray_status
    echo "Successfully joined Ray cluster"
fi

if [ "$RANK" == "0" ]; then
    bash ${PROJ_DIR}/scripts/rl_4nodes_dapo.sh 2>&1 | tee ${PROJ_DIR}/logs/rl_log_$(date +%Y%m%d_%H%M%S).txt &
else
    sleep 30d
fi

wait
```

## 📊 Evaluation

We conduct evaluation on seven long-context DocQA benchmarks, including multi-hop reasoning benchmarks such as 2WikiMultihopQA, HotpotQA, Musique, NarrativeQA, Qasper, and Frames as well as mathematical reasoning benchmarks like DocMath. We report the maximum of exact match and LLM-judged accuracy as the final score, aligned with the reward function in our RL training process. We use DeepSeek-V3 as the judge model with a temperature of 0.0 to provide a reliable evaluation.

```bash
# Step 1. Serve the model for evaluation
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
MODEL_NAME="QwenLong-L1-32B"
MODEL_PATH="Tongyi-Zhiwen/QwenLong-L1-32B"

vllm serve ${MODEL_PATH} \
    --port 23547 \
    --api-key "token-abc123" \
    --tensor-parallel-size 8 \
    --gpu-memory-utilization 0.95 \
    --max_model_len 131072 \
    --trust-remote-code

# Step 2. Generate model responses for each dataset
export SERVE_HOST="<YOUR_SERVE_HOST_HERE>" # e.g., 127.0.0.1
export SERVE_PORT="23547"
PROJ_DIR="<YOUR_PROJ_DIR_HERE>"
DATA="<YOUR_DATA_HERE>" # e.g., docmath, frames, 2wikimqa, hotpotqa, musique, narrativeqa, pasper
python ${PROJ_DIR}/eval/${DATA}.py \
    --save_dir "${PROJ_DIR}/eval/results/${DATA}" \
    --save_file "${MODEL_NAME}" \
    --model "${MODEL_PATH}" \
    --tokenizer "${MODEL_PATH}" \
    --n_proc 16 \
    --api "openai"

# Step 3. Verify model responses for each dataset
export VERIFIER_API="<YOUR_API_KEY_HERE>"
export VERIFIER_URL="https://api.deepseek.com/v1"
PROJ_DIR="<YOUR_PROJ_DIR_HERE>"
DATA="<YOUR_DATA_HERE>" # e.g., docmath, frames, 2wikimqa, hotpotqa, musique, narrativeqa, pasper
python ${PROJ_DIR}/eval/${DATA}_verify.py \
    --save_dir "${PROJ_DIR}/results/${DATA}" \
    --save_file "${MODEL_NAME}" \
    --judge_model "deepseek-chat" \
    --batch_size 20
```

## 📝 Citation

If you find this work is relevant with your research or applications, please feel free to cite our work!
```
@article{wan2025qwenlongl1,
  title={QwenLong-L1: : Towards Long-Context Large Reasoning Models with Reinforcement Learning},
  author={Fanqi Wan, Weizhou Shen, Shengyi Liao, Yingcheng Shi, Chenliang Li, Ziyi Yang, Ji Zhang, Fei Huang, Jingren Zhou, Ming Yan},
  journal={arXiv preprint arXiv:2505.17667},
  year={2025}
}
```