File size: 8,987 Bytes
3eccd10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
---
license: apache-2.0
---

# <span style="color: #7FFF7F;">TriLM_190M_Unpacked GGUF Models</span>

## **Choosing the Right Model Format**  

Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**.  

### **BF16 (Brain Float 16) – Use if BF16 acceleration is available**  
- A 16-bit floating-point format designed for **faster computation** while retaining good precision.  
- Provides **similar dynamic range** as FP32 but with **lower memory usage**.  
- Recommended if your hardware supports **BF16 acceleration** (check your device’s specs).  
- Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32.  

πŸ“Œ **Use BF16 if:**  
βœ” Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs).  
βœ” You want **higher precision** while saving memory.  
βœ” You plan to **requantize** the model into another format.  

πŸ“Œ **Avoid BF16 if:**  
❌ Your hardware does **not** support BF16 (it may fall back to FP32 and run slower).  
❌ You need compatibility with older devices that lack BF16 optimization.  

---

### **F16 (Float 16) – More widely supported than BF16**  
- A 16-bit floating-point **high precision** but with less of range of values than BF16. 
- Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs).  
- Slightly lower numerical precision than BF16 but generally sufficient for inference.  

πŸ“Œ **Use F16 if:**  
βœ” Your hardware supports **FP16** but **not BF16**.  
βœ” You need a **balance between speed, memory usage, and accuracy**.  
βœ” You are running on a **GPU** or another device optimized for FP16 computations.  

πŸ“Œ **Avoid F16 if:**  
❌ Your device lacks **native FP16 support** (it may run slower than expected).  
❌ You have memory limitations.  

---

### **Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference**  
Quantization reduces model size and memory usage while maintaining as much accuracy as possible.  
- **Lower-bit models (Q4_K)** β†’ **Best for minimal memory usage**, may have lower precision.  
- **Higher-bit models (Q6_K, Q8_0)** β†’ **Better accuracy**, requires more memory.  

πŸ“Œ **Use Quantized Models if:**  
βœ” You are running inference on a **CPU** and need an optimized model.  
βœ” Your device has **low VRAM** and cannot load full-precision models.  
βœ” You want to reduce **memory footprint** while keeping reasonable accuracy.  

πŸ“Œ **Avoid Quantized Models if:**  
❌ You need **maximum accuracy** (full-precision models are better for this).  
❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16).  

---

### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)**  
These models are optimized for **extreme memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint.  

- **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **extreme memory efficiency**.  
  - **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large.  
  - **Trade-off**: Lower accuracy compared to higher-bit quantizations.  

- **IQ3_S**: Small block size for **maximum memory efficiency**.  
  - **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive.  

- **IQ3_M**: Medium block size for better accuracy than **IQ3_S**.  
  - **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting.  

- **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy.  
  - **Use case**: Best for **low-memory devices** where **Q6_K** is too large.  

- **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**.  
  - **Use case**: Best for **ARM-based devices** or **low-memory environments**.  

---

### **Summary Table: Model Format Selection**  

| Model Format  | Precision  | Memory Usage  | Device Requirements  | Best Use Case  |  
|--------------|------------|---------------|----------------------|---------------|  
| **BF16**     | Highest    | High          | BF16-supported GPU/CPUs  | High-speed inference with reduced memory |  
| **F16**      | High       | High          | FP16-supported devices | GPU inference when BF16 isn’t available |  
| **Q4_K**     | Medium Low | Low           | CPU or Low-VRAM devices | Best for memory-constrained environments |  
| **Q6_K**     | Medium     | Moderate      | CPU with more memory | Better accuracy while still being quantized |  
| **Q8_0**     | High       | Moderate      | CPU or GPU with enough VRAM | Best accuracy among quantized models |  
| **IQ3_XS**   | Very Low   | Very Low      | Ultra-low-memory devices | Extreme memory efficiency and low accuracy |  
| **Q4_0**     | Low        | Low           | ARM or low-memory devices | llama.cpp can optimize for ARM devices |  

---

## **Included Files & Details**  

### `TriLM_190M_Unpacked-bf16.gguf`  
- Model weights preserved in **BF16**.  
- Use this if you want to **requantize** the model into a different format.  
- Best if your device supports **BF16 acceleration**.  

### `TriLM_190M_Unpacked-f16.gguf`  
- Model weights stored in **F16**.  
- Use if your device supports **FP16**, especially if BF16 is not available.  

### `TriLM_190M_Unpacked-bf16-q8_0.gguf`  
- **Output & embeddings** remain in **BF16**.  
- All other layers quantized to **Q8_0**.  
- Use if your device supports **BF16** and you want a quantized version.  

### `TriLM_190M_Unpacked-f16-q8_0.gguf`  
- **Output & embeddings** remain in **F16**.  
- All other layers quantized to **Q8_0**.    

### `TriLM_190M_Unpacked-q4_k.gguf`  
- **Output & embeddings** quantized to **Q8_0**.  
- All other layers quantized to **Q4_K**.  
- Good for **CPU inference** with limited memory.  

### `TriLM_190M_Unpacked-q4_k_s.gguf`  
- Smallest **Q4_K** variant, using less memory at the cost of accuracy.  
- Best for **very low-memory setups**.  

### `TriLM_190M_Unpacked-q6_k.gguf`  
- **Output & embeddings** quantized to **Q8_0**.  
- All other layers quantized to **Q6_K** .  

### `TriLM_190M_Unpacked-q8_0.gguf`  
- Fully **Q8** quantized model for better accuracy.  
- Requires **more memory** but offers higher precision.  

### `TriLM_190M_Unpacked-iq3_xs.gguf`  
- **IQ3_XS** quantization, optimized for **extreme memory efficiency**.  
- Best for **ultra-low-memory devices**.  

### `TriLM_190M_Unpacked-iq3_m.gguf`  
- **IQ3_M** quantization, offering a **medium block size** for better accuracy.  
- Suitable for **low-memory devices**.  

### `TriLM_190M_Unpacked-q4_0.gguf`  
- Pure **Q4_0** quantization, optimized for **ARM devices**.  
- Best for **low-memory environments**.
- Prefer IQ4_NL for better accuracy.

# <span id="testllm" style="color: #7F7FFF;">πŸš€ If you find these models useful</span>

Please click like ❀ . Also I’d really appreciate it if you could test my Network Monitor Assistant at πŸ‘‰ [Network Monitor Assitant](https://freenetworkmonitor.click/dashboard).

πŸ’¬ Click the **chat icon** (bottom right of the main and dashboard pages) . Choose a LLM; toggle between the LLM Types TurboLLM -> FreeLLM -> TestLLM.

### What I'm Testing

I'm experimenting with **function calling** against my network monitoring service. Using small open source models. I am into the question "How small can it go and still function".

🟑 **TestLLM** – Runs the current testing model using llama.cpp on 6 threads of a Cpu VM (Should take about 15s to load. Inference speed is quite slow and it only processes one user prompt at a timeβ€”still working on scaling!). If you're curious, I'd be happy to share how it works! .

### The other Available AI Assistants

🟒 **TurboLLM** – Uses **gpt-4o-mini** Fast! . Note: tokens are limited since OpenAI models are pricey, but you can [Login](https://freenetworkmonitor.click) or [Download](https://freenetworkmonitor.click/download) the Free Network Monitor agent to get more tokens, Alternatively use the FreeLLM .

πŸ”΅ **FreeLLM** – Runs **open-source Hugging Face models** Medium speed (unlimited, subject to Hugging Face API availability).




# TriLM 190M Unpacked

TriLM (ternary model), unpacked to FP16 format - compatible with FP16 GEMMs. After unpacking, TriLM has the same architecture as LLaMa.

```python
import transformers as tf, torch
model_name = "SpectraSuite/TriLM_190M_Unpacked"

# Please adjust the temperature, repetition penalty, top_k, top_p and other sampling parameters according to your needs.
pipeline = tf.pipeline("text-generation", model=model_id, model_kwargs={"torch_dtype": torch.float16}, device_map="auto")

# These are base (pretrained) LLMs that are not instruction and chat tuned. You may need to adjust your prompt accordingly.
pipeline("Once upon a time")
```

* License: Apache 2.0
* We will use our GitHub repo for communication (including HF repo related queries). Feel free to open an issue here https://github.com/NolanoOrg/SpectraSuite