Create README.md
Browse files
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,78 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            language: en
         | 
| 3 | 
            +
            tags: 
         | 
| 4 | 
            +
            - deberta-v3
         | 
| 5 | 
            +
            - deberta-v2`
         | 
| 6 | 
            +
            - deberta-mnli
         | 
| 7 | 
            +
            tasks: mnli
         | 
| 8 | 
            +
            thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
         | 
| 9 | 
            +
            license: mit
         | 
| 10 | 
            +
            pipeline_tag: zero-shot-classification
         | 
| 11 | 
            +
            ---
         | 
| 12 | 
            +
            ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention
         | 
| 13 | 
            +
            [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on  majority of NLU tasks with 80GB training data. 
         | 
| 14 | 
            +
            Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates.
         | 
| 15 | 
            +
            This is the DeBERTa V2 xxlarge model with 48 layers, 1536 hidden size. The total parameters are 1.5B and it is trained with 160GB raw data.
         | 
| 16 | 
            +
            ### Fine-tuning on NLU tasks
         | 
| 17 | 
            +
            We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.
         | 
| 18 | 
            +
            | Model                     | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm   | SST-2 | QNLI | CoLA | RTE    | MRPC  | QQP   |STS-B |
         | 
| 19 | 
            +
            |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------|
         | 
| 20 | 
            +
            |                           | F1/EM     | F1/EM     | Acc         | Acc   | Acc  | MCC  | Acc    |Acc/F1 |Acc/F1 |P/S   |
         | 
| 21 | 
            +
            | BERT-Large                | 90.9/84.1 | 81.8/79.0 | 86.6/-      | 93.2  | 92.3 | 60.6 | 70.4   | 88.0/-       | 91.3/- |90.0/- |
         | 
| 22 | 
            +
            | RoBERTa-Large             | 94.6/88.9 | 89.4/86.5 | 90.2/-      | 96.4  | 93.9 | 68.0 | 86.6   | 90.9/-       | 92.2/- |92.4/- |
         | 
| 23 | 
            +
            | XLNet-Large               | 95.1/89.7 | 90.6/87.9 | 90.8/-      | 97.0  | 94.9 | 69.0 | 85.9   | 90.8/-       | 92.3/- |92.5/- |
         | 
| 24 | 
            +
            | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 |
         | 
| 25 | 
            +
            | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/-  | -/-  | 91.5/91.2| 97.0 | - | -    | 93.1   | 92.1/94.3    | -    |92.9/92.7|
         | 
| 26 | 
            +
            | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9|
         | 
| 27 | 
            +
            |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** |
         | 
| 28 | 
            +
            --------
         | 
| 29 | 
            +
            #### Notes.
         | 
| 30 | 
            +
             - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks.
         | 
| 31 | 
            +
             - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, we recommand using **deepspeed** as it's faster and saves memory.
         | 
| 32 | 
            +
             
         | 
| 33 | 
            +
            Run with `Deepspeed`,
         | 
| 34 | 
            +
            ```bash
         | 
| 35 | 
            +
            pip install datasets
         | 
| 36 | 
            +
            pip install deepspeed
         | 
| 37 | 
            +
            # Download the deepspeed config file
         | 
| 38 | 
            +
            wget https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/ds_config.json -O ds_config.json
         | 
| 39 | 
            +
            export TASK_NAME=mnli
         | 
| 40 | 
            +
            output_dir="ds_results"
         | 
| 41 | 
            +
            num_gpus=8
         | 
| 42 | 
            +
            batch_size=8
         | 
| 43 | 
            +
            python -m torch.distributed.launch --nproc_per_node=${num_gpus} \\
         | 
| 44 | 
            +
              run_glue.py \\
         | 
| 45 | 
            +
              --model_name_or_path microsoft/deberta-v2-xxlarge \\
         | 
| 46 | 
            +
              --task_name $TASK_NAME \\
         | 
| 47 | 
            +
              --do_train \\
         | 
| 48 | 
            +
              --do_eval \\
         | 
| 49 | 
            +
              --max_seq_length 256 \\
         | 
| 50 | 
            +
              --per_device_train_batch_size ${batch_size} \\
         | 
| 51 | 
            +
              --learning_rate 3e-6 \\
         | 
| 52 | 
            +
              --num_train_epochs 3 \\
         | 
| 53 | 
            +
              --output_dir $output_dir \\
         | 
| 54 | 
            +
              --overwrite_output_dir \\
         | 
| 55 | 
            +
              --logging_steps 10 \\
         | 
| 56 | 
            +
              --logging_dir $output_dir \\
         | 
| 57 | 
            +
              --deepspeed ds_config.json
         | 
| 58 | 
            +
            ```
         | 
| 59 | 
            +
            You can also run with `--sharded_ddp`
         | 
| 60 | 
            +
            ```bash  
         | 
| 61 | 
            +
            cd transformers/examples/text-classification/
         | 
| 62 | 
            +
            export TASK_NAME=mnli
         | 
| 63 | 
            +
            python -m torch.distributed.launch --nproc_per_node=8 run_glue.py   --model_name_or_path microsoft/deberta-v2-xxlarge   \\
         | 
| 64 | 
            +
            --task_name $TASK_NAME   --do_train   --do_eval   --max_seq_length 256   --per_device_train_batch_size 8   \\
         | 
| 65 | 
            +
            --learning_rate 3e-6   --num_train_epochs 3   --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16
         | 
| 66 | 
            +
            ```
         | 
| 67 | 
            +
            ### Citation
         | 
| 68 | 
            +
            If you find DeBERTa useful for your work, please cite the following paper:
         | 
| 69 | 
            +
            ``` latex
         | 
| 70 | 
            +
            @inproceedings{
         | 
| 71 | 
            +
            he2021deberta,
         | 
| 72 | 
            +
            title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION},
         | 
| 73 | 
            +
            author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
         | 
| 74 | 
            +
            booktitle={International Conference on Learning Representations},
         | 
| 75 | 
            +
            year={2021},
         | 
| 76 | 
            +
            url={https://openreview.net/forum?id=XPZIaotutsD}
         | 
| 77 | 
            +
            }
         | 
| 78 | 
            +
            ```
         | 
