NMP123 commited on
Commit
19b77fc
·
verified ·
1 Parent(s): fba8c9e

End of training

Browse files
Files changed (1) hide show
  1. README.md +17 -12
README.md CHANGED
@@ -12,8 +12,8 @@ model-index:
12
  - name: w2v-bert-2.0-Vietnamese-colab-CV17.0
13
  results:
14
  - task:
15
- type: automatic-speech-recognition
16
  name: Automatic Speech Recognition
 
17
  dataset:
18
  name: common_voice_17_0
19
  type: common_voice_17_0
@@ -21,9 +21,9 @@ model-index:
21
  split: test
22
  args: vi
23
  metrics:
24
- - type: wer
25
- value: 0.3026260059296908
26
- name: Wer
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
33
 
34
  This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset.
35
  It achieves the following results on the evaluation set:
36
- - Loss: 0.7833
37
- - Wer: 0.3026
38
 
39
  ## Model description
40
 
@@ -62,22 +62,27 @@ The following hyperparameters were used during training:
62
  - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
63
  - lr_scheduler_type: linear
64
  - lr_scheduler_warmup_steps: 500
65
- - num_epochs: 15
66
  - mixed_precision_training: Native AMP
67
 
68
  ### Training results
69
 
70
  | Training Loss | Epoch | Step | Validation Loss | Wer |
71
  |:-------------:|:-------:|:----:|:---------------:|:------:|
72
- | 5.0336 | 3.2609 | 300 | 3.2141 | 1.0132 |
73
- | 2.5587 | 6.5217 | 600 | 1.3607 | 0.7407 |
74
- | 0.2529 | 9.7826 | 900 | 0.8210 | 0.3589 |
75
- | 0.0571 | 13.0435 | 1200 | 0.7833 | 0.3026 |
 
 
 
 
 
76
 
77
 
78
  ### Framework versions
79
 
80
  - Transformers 4.50.0
81
  - Pytorch 2.6.0+cu124
82
- - Datasets 3.4.1
83
  - Tokenizers 0.21.1
 
12
  - name: w2v-bert-2.0-Vietnamese-colab-CV17.0
13
  results:
14
  - task:
 
15
  name: Automatic Speech Recognition
16
+ type: automatic-speech-recognition
17
  dataset:
18
  name: common_voice_17_0
19
  type: common_voice_17_0
 
21
  split: test
22
  args: vi
23
  metrics:
24
+ - name: Wer
25
+ type: wer
26
+ value: 0.2728716645489199
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
33
 
34
  This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset.
35
  It achieves the following results on the evaluation set:
36
+ - Loss: 1.0607
37
+ - Wer: 0.2729
38
 
39
  ## Model description
40
 
 
62
  - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
63
  - lr_scheduler_type: linear
64
  - lr_scheduler_warmup_steps: 500
65
+ - num_epochs: 30
66
  - mixed_precision_training: Native AMP
67
 
68
  ### Training results
69
 
70
  | Training Loss | Epoch | Step | Validation Loss | Wer |
71
  |:-------------:|:-------:|:----:|:---------------:|:------:|
72
+ | 2.8799 | 3.2609 | 300 | 0.7434 | 0.3899 |
73
+ | 0.1626 | 6.5217 | 600 | 0.8157 | 0.3578 |
74
+ | 0.0823 | 9.7826 | 900 | 0.8759 | 0.3704 |
75
+ | 0.04 | 13.0435 | 1200 | 0.9129 | 0.3195 |
76
+ | 0.0169 | 16.3043 | 1500 | 0.9113 | 0.2904 |
77
+ | 0.0056 | 19.5652 | 1800 | 0.9906 | 0.2809 |
78
+ | 0.0016 | 22.8261 | 2100 | 1.0506 | 0.2848 |
79
+ | 0.0005 | 26.0870 | 2400 | 1.0502 | 0.2730 |
80
+ | 0.0002 | 29.3478 | 2700 | 1.0607 | 0.2729 |
81
 
82
 
83
  ### Framework versions
84
 
85
  - Transformers 4.50.0
86
  - Pytorch 2.6.0+cu124
87
+ - Datasets 3.5.0
88
  - Tokenizers 0.21.1