End of training
Browse files
README.md
CHANGED
@@ -12,8 +12,8 @@ model-index:
|
|
12 |
- name: w2v-bert-2.0-Vietnamese-colab-CV17.0
|
13 |
results:
|
14 |
- task:
|
15 |
-
type: automatic-speech-recognition
|
16 |
name: Automatic Speech Recognition
|
|
|
17 |
dataset:
|
18 |
name: common_voice_17_0
|
19 |
type: common_voice_17_0
|
@@ -21,9 +21,9 @@ model-index:
|
|
21 |
split: test
|
22 |
args: vi
|
23 |
metrics:
|
24 |
-
-
|
25 |
-
|
26 |
-
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
33 |
|
34 |
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
-
- Loss:
|
37 |
-
- Wer: 0.
|
38 |
|
39 |
## Model description
|
40 |
|
@@ -62,22 +62,27 @@ The following hyperparameters were used during training:
|
|
62 |
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
63 |
- lr_scheduler_type: linear
|
64 |
- lr_scheduler_warmup_steps: 500
|
65 |
-
- num_epochs:
|
66 |
- mixed_precision_training: Native AMP
|
67 |
|
68 |
### Training results
|
69 |
|
70 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
71 |
|:-------------:|:-------:|:----:|:---------------:|:------:|
|
72 |
-
|
|
73 |
-
|
|
74 |
-
| 0.
|
75 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
|
78 |
### Framework versions
|
79 |
|
80 |
- Transformers 4.50.0
|
81 |
- Pytorch 2.6.0+cu124
|
82 |
-
- Datasets 3.
|
83 |
- Tokenizers 0.21.1
|
|
|
12 |
- name: w2v-bert-2.0-Vietnamese-colab-CV17.0
|
13 |
results:
|
14 |
- task:
|
|
|
15 |
name: Automatic Speech Recognition
|
16 |
+
type: automatic-speech-recognition
|
17 |
dataset:
|
18 |
name: common_voice_17_0
|
19 |
type: common_voice_17_0
|
|
|
21 |
split: test
|
22 |
args: vi
|
23 |
metrics:
|
24 |
+
- name: Wer
|
25 |
+
type: wer
|
26 |
+
value: 0.2728716645489199
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
33 |
|
34 |
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 1.0607
|
37 |
+
- Wer: 0.2729
|
38 |
|
39 |
## Model description
|
40 |
|
|
|
62 |
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
63 |
- lr_scheduler_type: linear
|
64 |
- lr_scheduler_warmup_steps: 500
|
65 |
+
- num_epochs: 30
|
66 |
- mixed_precision_training: Native AMP
|
67 |
|
68 |
### Training results
|
69 |
|
70 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
71 |
|:-------------:|:-------:|:----:|:---------------:|:------:|
|
72 |
+
| 2.8799 | 3.2609 | 300 | 0.7434 | 0.3899 |
|
73 |
+
| 0.1626 | 6.5217 | 600 | 0.8157 | 0.3578 |
|
74 |
+
| 0.0823 | 9.7826 | 900 | 0.8759 | 0.3704 |
|
75 |
+
| 0.04 | 13.0435 | 1200 | 0.9129 | 0.3195 |
|
76 |
+
| 0.0169 | 16.3043 | 1500 | 0.9113 | 0.2904 |
|
77 |
+
| 0.0056 | 19.5652 | 1800 | 0.9906 | 0.2809 |
|
78 |
+
| 0.0016 | 22.8261 | 2100 | 1.0506 | 0.2848 |
|
79 |
+
| 0.0005 | 26.0870 | 2400 | 1.0502 | 0.2730 |
|
80 |
+
| 0.0002 | 29.3478 | 2700 | 1.0607 | 0.2729 |
|
81 |
|
82 |
|
83 |
### Framework versions
|
84 |
|
85 |
- Transformers 4.50.0
|
86 |
- Pytorch 2.6.0+cu124
|
87 |
+
- Datasets 3.5.0
|
88 |
- Tokenizers 0.21.1
|