NMP123 commited on
Commit
d829eab
·
verified ·
1 Parent(s): f7d75cf

End of training

Browse files
Files changed (1) hide show
  1. README.md +14 -13
README.md CHANGED
@@ -12,8 +12,8 @@ model-index:
12
  - name: w2v-bert-2.0-Vietnamese-colab-CV17.0
13
  results:
14
  - task:
15
- type: automatic-speech-recognition
16
  name: Automatic Speech Recognition
 
17
  dataset:
18
  name: common_voice_17_0
19
  type: common_voice_17_0
@@ -21,9 +21,9 @@ model-index:
21
  split: test
22
  args: vi
23
  metrics:
24
- - type: wer
25
- value: 0.26461245235069886
26
- name: Wer
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
33
 
34
  This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset.
35
  It achieves the following results on the evaluation set:
36
- - Loss: 0.7535
37
- - Wer: 0.2646
38
 
39
  ## Model description
40
 
@@ -53,7 +53,7 @@ More information needed
53
  ### Training hyperparameters
54
 
55
  The following hyperparameters were used during training:
56
- - learning_rate: 3e-05
57
  - train_batch_size: 16
58
  - eval_batch_size: 8
59
  - seed: 42
@@ -62,16 +62,17 @@ The following hyperparameters were used during training:
62
  - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
63
  - lr_scheduler_type: linear
64
  - lr_scheduler_warmup_steps: 500
65
- - num_epochs: 10
66
  - mixed_precision_training: Native AMP
67
 
68
  ### Training results
69
 
70
- | Training Loss | Epoch | Step | Validation Loss | Wer |
71
- |:-------------:|:------:|:----:|:---------------:|:------:|
72
- | 3.2974 | 3.2609 | 300 | 0.6899 | 0.3559 |
73
- | 0.1432 | 6.5217 | 600 | 0.7335 | 0.2991 |
74
- | 0.0363 | 9.7826 | 900 | 0.7535 | 0.2646 |
 
75
 
76
 
77
  ### Framework versions
 
12
  - name: w2v-bert-2.0-Vietnamese-colab-CV17.0
13
  results:
14
  - task:
 
15
  name: Automatic Speech Recognition
16
+ type: automatic-speech-recognition
17
  dataset:
18
  name: common_voice_17_0
19
  type: common_voice_17_0
 
21
  split: test
22
  args: vi
23
  metrics:
24
+ - name: Wer
25
+ type: wer
26
+ value: 0.3026260059296908
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
33
 
34
  This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset.
35
  It achieves the following results on the evaluation set:
36
+ - Loss: 0.7833
37
+ - Wer: 0.3026
38
 
39
  ## Model description
40
 
 
53
  ### Training hyperparameters
54
 
55
  The following hyperparameters were used during training:
56
+ - learning_rate: 5e-05
57
  - train_batch_size: 16
58
  - eval_batch_size: 8
59
  - seed: 42
 
62
  - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
63
  - lr_scheduler_type: linear
64
  - lr_scheduler_warmup_steps: 500
65
+ - num_epochs: 15
66
  - mixed_precision_training: Native AMP
67
 
68
  ### Training results
69
 
70
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
71
+ |:-------------:|:-------:|:----:|:---------------:|:------:|
72
+ | 5.0336 | 3.2609 | 300 | 3.2141 | 1.0132 |
73
+ | 2.5587 | 6.5217 | 600 | 1.3607 | 0.7407 |
74
+ | 0.2529 | 9.7826 | 900 | 0.8210 | 0.3589 |
75
+ | 0.0571 | 13.0435 | 1200 | 0.7833 | 0.3026 |
76
 
77
 
78
  ### Framework versions