--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: w2v-bert-2.0-Vietnamese-colab-CV17.0 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: vi split: test args: vi metrics: - name: Wer type: wer value: 0.2728716645489199 --- # w2v-bert-2.0-Vietnamese-colab-CV17.0 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.0607 - Wer: 0.2729 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 2.8799 | 3.2609 | 300 | 0.7434 | 0.3899 | | 0.1626 | 6.5217 | 600 | 0.8157 | 0.3578 | | 0.0823 | 9.7826 | 900 | 0.8759 | 0.3704 | | 0.04 | 13.0435 | 1200 | 0.9129 | 0.3195 | | 0.0169 | 16.3043 | 1500 | 0.9113 | 0.2904 | | 0.0056 | 19.5652 | 1800 | 0.9906 | 0.2809 | | 0.0016 | 22.8261 | 2100 | 1.0506 | 0.2848 | | 0.0005 | 26.0870 | 2400 | 1.0502 | 0.2730 | | 0.0002 | 29.3478 | 2700 | 1.0607 | 0.2729 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1