File size: 2,477 Bytes
2b53ab6 70c43e7 2b53ab6 70c43e7 2b53ab6 70c43e7 2b53ab6 70c43e7 2b53ab6 70c43e7 2b53ab6 c4b3ef8 2b53ab6 70c43e7 4411f87 70c43e7 2b53ab6 0af9d0a db81864 0af9d0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
license: gemma
base_model: google/paligemma-3b-pt-224
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: paligemma_Malaysian_plate_recognition
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# paligemma_Malaysian_plate_recognition
This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on the Malaysian license plate dataset.
``` python
from PIL import Image
import torch
from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration, BitsAndBytesConfig, TrainingArguments, Trainer
import time
model = PaliGemmaForConditionalGeneration.from_pretrained('NYUAD-ComNets/VehiclePaliGemma',torch_dtype=torch.bfloat16)
input_text ="extract the text from the image"
processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-pt-224")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
input_image = Image.open(image_path)
inputs = processor(text=input_text, images=input_image, padding="longest", do_convert_rgb=True, return_tensors="pt").to(device)
inputs = inputs.to(dtype=model.dtype)
with torch.no_grad():
output = model.generate(**inputs, max_length=500)
result=processor.decode(output[0], skip_special_tokens=True)[len(input_text):].strip()
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 5
### Framework versions
- Transformers 4.42.4
- Pytorch 2.1.2+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
# BibTeX entry and citation info
```
@misc{aldahoul2024advancingvehicleplaterecognition,
title={Advancing Vehicle Plate Recognition: Multitasking Visual Language Models with VehiclePaliGemma},
author={Nouar AlDahoul and Myles Joshua Toledo Tan and Raghava Reddy Tera and Hezerul Abdul Karim and Chee How Lim and Manish Kumar Mishra and Yasir Zaki},
year={2024},
eprint={2412.14197},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2412.14197},
}
|