--- license: gemma base_model: google/paligemma-3b-pt-224 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: paligemma_Malaysian_plate_recognition results: [] --- # paligemma_Malaysian_plate_recognition This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on the Malaysian license plate dataset. ``` python from PIL import Image import torch from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration, BitsAndBytesConfig, TrainingArguments, Trainer import time model = PaliGemmaForConditionalGeneration.from_pretrained('NYUAD-ComNets/VehiclePaliGemma',torch_dtype=torch.bfloat16) input_text ="extract the text from the image" processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-pt-224") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) input_image = Image.open(image_path) inputs = processor(text=input_text, images=input_image, padding="longest", do_convert_rgb=True, return_tensors="pt").to(device) inputs = inputs.to(dtype=model.dtype) with torch.no_grad(): output = model.generate(**inputs, max_length=500) result=processor.decode(output[0], skip_special_tokens=True)[len(input_text):].strip() ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 5 ### Framework versions - Transformers 4.42.4 - Pytorch 2.1.2+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1 # BibTeX entry and citation info ``` @misc{aldahoul2024advancingvehicleplaterecognition, title={Advancing Vehicle Plate Recognition: Multitasking Visual Language Models with VehiclePaliGemma}, author={Nouar AlDahoul and Myles Joshua Toledo Tan and Raghava Reddy Tera and Hezerul Abdul Karim and Chee How Lim and Manish Kumar Mishra and Yasir Zaki}, year={2024}, eprint={2412.14197}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2412.14197}, }