Na-Rajan commited on
Commit
e5844bd
Β·
verified Β·
1 Parent(s): 60298cb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -3
README.md CHANGED
@@ -1,3 +1,75 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ Model Card: TERPredictor V1
5
+ πŸ“Œ Model Name
6
+ TERPredictor V1 – A linear regression model for predicting the Total Expense Ratio (TER) of mutual fund Regular Plans.
7
+
8
+ πŸ“– Overview
9
+ TERPredictor V1 is a regression model trained to estimate the 'Regular Plan - Total TER (%)' of mutual funds based on various financial features. It uses a simple linear regression approach and achieves near-perfect performance on the test set. Due to the unusually high accuracy, this model is best suited for exploratory analysis and feature relationship interpretation, rather than generalization to unseen data.
10
+
11
+ πŸ“Š Intended Uses
12
+ Expense Ratio Estimation: Estimate TER for new or hypothetical mutual fund structures.
13
+
14
+ Outlier Detection: Identify funds with unusually high or low TERs.
15
+
16
+ Feature Impact Analysis: Understand which components most influence TER.
17
+
18
+ 🧠 Model Architecture
19
+ Attribute Value
20
+ Model Type Linear Regression
21
+ Framework scikit-learn
22
+ Input Features 10 float64 columns
23
+ Target Variable Regular Plan - Total TER (%)
24
+ Identifier Dropped Scheme Name (object)
25
+ πŸ“š Training Details
26
+ Dataset Size: 1,622 samples
27
+
28
+ Train/Test Split: 1297 / 325
29
+
30
+ Missing Values: None
31
+
32
+ Preprocessing:
33
+
34
+ Dropped identifier column (Scheme Name)
35
+
36
+ No normalization required due to linear model simplicity
37
+
38
+ πŸ“ˆ Evaluation Metrics
39
+ Metric Value
40
+ Mean Squared Error (MSE) 0.000001
41
+ R-squared (RΒ²) 0.999999
42
+ ⚠️ Note: These metrics suggest potential data leakage or a deterministic relationship between features and target. Use with caution.
43
+
44
+ πŸš€ How to Use
45
+ python
46
+ from terpredictor import TERModel
47
+
48
+ model = TERModel.load_pretrained("your-huggingface-username/terpredictor-v1")
49
+ input_data = {
50
+ "feature_1": 0.12,
51
+ "feature_2": 0.03,
52
+ ...
53
+ }
54
+ predicted_ter = model.predict(input_data)
55
+ ⚠️ Limitations
56
+ Potential Data Leakage: Extremely high RΒ² may indicate the target is directly derived from input features.
57
+
58
+ Limited Generalization: Not recommended for predicting TER on unseen or structurally different funds.
59
+
60
+ No Feature Engineering: Model assumes raw features are sufficient.
61
+
62
+ πŸ“„ License
63
+ MIT License
64
+
65
+ πŸ‘€ Author
66
+ Created by [Your Name or Organization]
67
+
68
+ πŸ“š Recommendations for Open-Sourcing
69
+ Include full training code and preprocessing steps
70
+
71
+ Provide detailed explanation of evaluation metrics
72
+
73
+ Add cautionary notes about performance anomalies
74
+
75
+ Consider publishing a cleaned or anonymized version of the dataset