--- base_model: csebuetnlp/banglabert tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: banglabert-MLTC-1 results: [] --- # banglabert-MLTC-1 This model is a fine-tuned version of [csebuetnlp/banglabert](https://huggingface.co/csebuetnlp/banglabert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3669 - F1: 0.8607 - Roc Auc: 0.8579 - Accuracy: 0.5835 - Hamming Loss: 0.1420 - Jaccard Score: 0.7555 - Zero One Loss: 0.4165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | Hamming Loss | Jaccard Score | Zero One Loss | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|:------------:|:-------------:|:-------------:| | 0.4242 | 1.0 | 146 | 0.4373 | 0.8248 | 0.8161 | 0.5013 | 0.1838 | 0.7018 | 0.4987 | | 0.39 | 2.0 | 292 | 0.3895 | 0.8407 | 0.8400 | 0.5784 | 0.1600 | 0.7252 | 0.4216 | | 0.2973 | 3.0 | 438 | 0.3736 | 0.8595 | 0.8547 | 0.5758 | 0.1452 | 0.7535 | 0.4242 | | 0.2465 | 4.0 | 584 | 0.3644 | 0.8638 | 0.8605 | 0.5913 | 0.1395 | 0.7602 | 0.4087 | | 0.2918 | 5.0 | 730 | 0.3669 | 0.8607 | 0.8579 | 0.5835 | 0.1420 | 0.7555 | 0.4165 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1