{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0c3687fb80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683701698609189548, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYbSr2kyl67wGElPe3zXTyhlZm8VshAPQAAgD8AAIA/mtGYvVwDabqXziqzMQCIq8mfHzqajsczAACAPwAAgD8AmGO7ufohP95l+bygvra+rmeJvGoHKL0AAAAAAAAAALOwG724ns652oeOOTSnGzVHkqY7HkOouAAAgD8AAIA/IDFnPjQK9j4+/ZO+1Hu2vg9mljz7Shm+AAAAAAAAAABmxXq9HmWIP6OJ371/1fm+qfUtvcD/VbwAAAAAAAAAAGb6vTzDgSg/lSDQvUtNq77Ju0068hlmvQAAAAAAAAAA89GRvV9zpTy2og89zZRhvg6LJr1Fdl29AAAAAAAAAAAastA92k3nPlIAIb3OtqW+rzicPR6AW7wAAAAAAAAAAM2U1ry/tqw/rR8Gvx+TEr89JY08fl3sPAAAAAAAAAAAWnkVvnowXT4qL7s9j81UvuTgmbsdhXa8AAAAAAAAAABmdpK6uHy1Pz2DZ72n9hA+jcaoOnqhTzwAAAAAAAAAAGCPfr5Riu8+Q1B7PmKkkb6OT+y8Vh8QPgAAAAAAAAAAANhGvIhdlz+yz3m9FJ/+vmmyqDzqV2A8AAAAAAAAAACarlK9Spq+PoBlsz2cDU2+fsa5PF5GyzkAAAAAAAAAAJp0s72dB0k+KhIkPqmuab4aaX27kB3ivAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVJgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKRgzHjp9uMAWyUTQ0BjAF0lEdAks8+BpYcN3V9lChoBkdAcY8wztTkyWgHTXMBaAhHQJLPeX4TK1Z1fZQoaAZHQHGtDreIl+poB008AWgIR0CSz9OerdWRdX2UKGgGR0Bxj3s3Q2MsaAdNHQFoCEdAktADqW1MNHV9lChoBkdAcPp6o2n89GgHTRwBaAhHQJLQGXC0ngJ1fZQoaAZHQHBvp26kIopoB00/AWgIR0CS0W3FDOTrdX2UKGgGR0BxoeMbWEsbaAdNVwFoCEdAktL2saKk23V9lChoBkdAbrg9f1Hvt2gHTQsBaAhHQJLTZv99+gF1fZQoaAZHQHDhl0knkT9oB0v6aAhHQJLUPz3AVO91fZQoaAZHQHCm63EyckNoB00lAWgIR0CS1LPwd8zAdX2UKGgGR0BuaW+7Dl5oaAdL/2gIR0CS1L74i5d4dX2UKGgGR0BxJGPPszEaaAdNGgFoCEdAktTebutwJnV9lChoBkdAbhhzpX6qKmgHTQcBaAhHQJLVxUBGQS11fZQoaAZHQHIvEAcT8HhoB00XAWgIR0CS1emlqJuVdX2UKGgGR0BJJQ2VE/jbaAdL3GgIR0CS1h0tyxRmdX2UKGgGR0BwoN8twrDqaAdNFQFoCEdAktbj37DVIHV9lChoBkdAcs9VnEl3QmgHTRsBaAhHQJLXR0tAcDN1fZQoaAZHQHArjrVvuPVoB009AWgIR0CS11E0BOpLdX2UKGgGR0BwHQmShakiaAdNCAFoCEdAkteMwxnFpHV9lChoBkdAcA5zBhx5s2gHTT0BaAhHQJLYYy6+WW11fZQoaAZHQHHfWDUVi4JoB00CAWgIR0CS2OZSeiBYdX2UKGgGR0ByPJlQMx46aAdNOwFoCEdAktjzOs1baHV9lChoBkdAb0dLHMlkY2gHTQ8BaAhHQJLaubUgB911fZQoaAZHQHGwN5Y5ksloB00WAWgIR0CS22KWszVMdX2UKGgGR0ByDYkSmIj4aAdL8mgIR0CS25vIOpbVdX2UKGgGR0BvCS9M9KVZaAdL4GgIR0CS2/3OObRXdX2UKGgGR0ByfZO45Lh8aAdNDQFoCEdAktxMbrC3w3V9lChoBkdAbqG4//vOQmgHTRsBaAhHQJLcUfuCwr11fZQoaAZHQHEmI0EX+ERoB00RAWgIR0CS3IP1ct5EdX2UKGgGR0Bx6tIjGDL9aAdL7GgIR0CS3Jh4dIXkdX2UKGgGR0BxZ5rULDyfaAdNAQFoCEdAkt2dITXarXV9lChoBkdAbDfu7YkE92gHS/NoCEdAkt6bdrO7hHV9lChoBkdAbhX9kz41xmgHTRIBaAhHQJLfQsunMt91fZQoaAZHQHIUQ53kgfVoB00KAWgIR0CS39Ssr/bTdX2UKGgGR0Bw2w8dPtUoaAdNJQFoCEdAkuB8My8BdXV9lChoBkdAcVtJ40Mw12gHTQQBaAhHQJLgx9b5dnl1fZQoaAZHQG6zgnc+JP9oB00eAWgIR0CS4pjzqbBodX2UKGgGR0Bu7CQFLWZraAdNIwFoCEdAkuK8M3IdVHV9lChoBkdAciFK6WgOBmgHS/VoCEdAkvdSNCJGfHV9lChoBkdAcASujRD1G2gHTSIBaAhHQJL4BB6a9bp1fZQoaAZHQHFJqe5Fw1loB00SAWgIR0CS+GnEVFhHdX2UKGgGR0ByE8P7N0NjaAdNAAFoCEdAkviJZW7vonV9lChoBkdAcmj/DLr5ZmgHS/9oCEdAkvixf8dgfHV9lChoBkdAcm6CZF5OamgHTR8BaAhHQJL5b5ULlV91fZQoaAZHQG8xzGgi/wloB00cAWgIR0CS+m8TBZZCdX2UKGgGR0Bsh/bwjMV2aAdNBQFoCEdAkvqXs5XEInV9lChoBkdAcKOjy4FzMmgHS+poCEdAkvrK2WpqAXV9lChoBkdAchDjWkJrtWgHTVwBaAhHQJL7BU5uIh11fZQoaAZHQG+mT+3pfQdoB00LAWgIR0CS+0VUuL75dX2UKGgGR0BwJQKArhBJaAdNawFoCEdAkvvUIC2c8XV9lChoBkdAbu5Y7JW/8GgHTSoBaAhHQJL8+WSlnAZ1fZQoaAZHQHBy0yULUkRoB0v2aAhHQJL9F3cHnlp1fZQoaAZHQHKjvlMh5gRoB00vAWgIR0CS/VH0se4kdX2UKGgGR0ByOVLGrCFcaAdNEgFoCEdAkv3o+4b0e3V9lChoBkdAcov8CxNZeWgHS9toCEdAkv6HSnccl3V9lChoBkdAb55hMJx//mgHTSsBaAhHQJL/utRvWH11fZQoaAZHQHASUpZwGW5oB00CAWgIR0CS/7fAKv3bdX2UKGgGR0BvEm7jDKoyaAdNFQFoCEdAkv/G1lXii3V9lChoBkdAcV5tHxz7uWgHTQABaAhHQJL/0KiO/+N1fZQoaAZHQHMIxm5DqnpoB0vfaAhHQJMAqaMJhOR1fZQoaAZHQG6OZ08vEjxoB0v2aAhHQJMBAOSW7e51fZQoaAZHQHK+wUYbbURoB0v3aAhHQJMBJkjHGS91fZQoaAZHQG4BjaoMrmRoB00GAWgIR0CTAetuDSPVdX2UKGgGR0BwxYiQkonbaAdNHgFoCEdAkwLVzMibD3V9lChoBkdAcQJFbFCLM2gHTQ0BaAhHQJMC8m+j/Mp1fZQoaAZHQHMK92cJ+lVoB01eAWgIR0CTAvByjpLVdX2UKGgGR0Bw10BnzxwyaAdL/GgIR0CTA7urIYFadX2UKGgGR0Br6a6MBIWhaAdL/WgIR0CTA/x/d69kdX2UKGgGR0Bw/dVsDW9UaAdNDwFoCEdAkwQcAFPi1nV9lChoBkdAcv3EeQuEmWgHS/hoCEdAkwRqHfuTinV9lChoBkdAb7AjZ+QU6GgHTQYBaAhHQJMFbCsOoYN1fZQoaAZHQHKvwaJhvzhoB0vwaAhHQJMGBhLGrCF1fZQoaAZHQHHV7tJFspJoB00MAWgIR0CTBsxyn1nNdX2UKGgGR0BysdaC+UQkaAdNFwFoCEdAkwc6Wom5UnV9lChoBkdAcdyVopQUH2gHTQcBaAhHQJMHyrMkhRt1fZQoaAZHQHDA22w3YL9oB00zAWgIR0CTCANu+AVgdX2UKGgGR0BvKqApazNVaAdNDgFoCEdAkwhZ+pfhM3V9lChoBkdAbX7iuMdcS2gHS/poCEdAkwjD8Lron3V9lChoBkdAcaJinYQJ5WgHTSQBaAhHQJMJKeDnNgV1fZQoaAZHQHEjSdSVGCtoB0v3aAhHQJMJxS75Ec91fZQoaAZHQHHPiudPLxJoB00mAWgIR0CTCyf/m1YydX2UKGgGR0BxHiYVqN6xaAdL+WgIR0CTCzLPD50sdX2UKGgGR0Bw6cdZJTVEaAdL8WgIR0CTC1QyyleodX2UKGgGR0Bwn2KGcnVoaAdNMQFoCEdAkwtgQ176YXV9lChoBkdAbjpB6a9bo2gHTSkBaAhHQJMMCqOtGNJ1fZQoaAZHQHCCsk6cRUZoB0v0aAhHQJMMVAQg9vF1fZQoaAZHQG5ySpJf6XVoB00sAWgIR0CTDFpN9H+ZdX2UKGgGR0BxJjOSntOVaAdL8WgIR0CTDL1ZDArQdX2UKGgGR0BwzKkFfReDaAdL9GgIR0CTDm92ovSMdX2UKGgGR0BvAmE7GNrCaAdNDQFoCEdAkw6WlyimEXV9lChoBkdAcw56P8yeqmgHTS4BaAhHQJMPFJvo/zJ1fZQoaAZHQHH42Mn7YTVoB00KAWgIR0CTDzmxdIGydX2UKGgGR0BxjHK3d9DyaAdNDQFoCEdAkw+iHEdeY3V9lChoBkdAcLatrsSkCWgHS/loCEdAkw/X+ZPVNHV9lChoBkdAcXRRFI/Z/WgHS/ZoCEdAkxBUCJXQt3V9lChoBkdAcMvVwxWT5mgHTRgBaAhHQJMQU8q4H5d1fZQoaAZHQHCu+4XoC+1oB0v6aAhHQJMRs9LYf4h1fZQoaAZHQG0rKPOpsGhoB0vzaAhHQJMRrzshPj51fZQoaAZHQHJN76pHZsdoB00cAWgIR0CTEoh/y5I6dX2UKGgGR0BzMa/nGKhtaAdNGQFoCEdAkxKb/bTMJXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}