Nellyw888 commited on
Commit
efa7763
·
verified ·
1 Parent(s): b6146ea

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -11,14 +11,14 @@ base_model:
11
  - Qwen/Qwen2.5-Coder-7B-Instruct
12
  ---
13
 
14
- # VeriReason-Qwen2.5-7b-SFT-Reasoning
15
 
16
  For implementation details, visit our GitHub repository: [VeriReason](https://github.com/NellyW8/VeriReason)
17
 
18
  Check out our paper: [VeriReason: Reinforcement Learning with Testbench Feedback for Reasoning-Enhanced Verilog Generation](https://arxiv.org/abs/2505.11849)
19
 
20
  ## Update Log
21
- 2025.05.17: Initial release of Nellyw888/VeriReason-Qwen2.5-7b-SFT-Reasoning
22
 
23
  ## Project Description
24
  This study introduces VeriReason, a novel approach utilizing reinforcement learning with testbench feedback to enhance the performance of pre-trained models for Verilog RTL code generation. VeriReason combines supervised fine-tuning with Guided Reward Proximal Optimization (GRPO) reinforcement learning, specifically tailored for RTL code generation. Using our curated high-quality training examples alongside a feedback-driven reward model, VeriReason achieves 83.1% functional correctness on the VerilogEval Machine benchmark, substantially outperforming both comparable-sized models and much larger commercial systems like GPT-4 Turbo.
@@ -39,7 +39,7 @@ You can use the model with the transformers library:
39
  import torch
40
  from transformers import AutoTokenizer, AutoModelForCausalLM
41
 
42
- model_name = "Nellyw888/Nellyw888/VeriReason-Qwen2.5-7b-SFT-Reasoning"
43
  tokenizer = AutoTokenizer.from_pretrained(model_name)
44
  model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
45
  model.eval()
 
11
  - Qwen/Qwen2.5-Coder-7B-Instruct
12
  ---
13
 
14
+ # VeriReason-Qwen2.5-7b-RTLCoder-Verilog-GRPO-reasoning-tb
15
 
16
  For implementation details, visit our GitHub repository: [VeriReason](https://github.com/NellyW8/VeriReason)
17
 
18
  Check out our paper: [VeriReason: Reinforcement Learning with Testbench Feedback for Reasoning-Enhanced Verilog Generation](https://arxiv.org/abs/2505.11849)
19
 
20
  ## Update Log
21
+ 2025.05.17: Initial release of VeriReason-Qwen2.5-7b-RTLCoder-Verilog-GRPO-reasoning-tb
22
 
23
  ## Project Description
24
  This study introduces VeriReason, a novel approach utilizing reinforcement learning with testbench feedback to enhance the performance of pre-trained models for Verilog RTL code generation. VeriReason combines supervised fine-tuning with Guided Reward Proximal Optimization (GRPO) reinforcement learning, specifically tailored for RTL code generation. Using our curated high-quality training examples alongside a feedback-driven reward model, VeriReason achieves 83.1% functional correctness on the VerilogEval Machine benchmark, substantially outperforming both comparable-sized models and much larger commercial systems like GPT-4 Turbo.
 
39
  import torch
40
  from transformers import AutoTokenizer, AutoModelForCausalLM
41
 
42
+ model_name = "Nellyw888/Nellyw888/VeriReason-Qwen2.5-7b-RTLCoder-Verilog-GRPO-reasoning-tb"
43
  tokenizer = AutoTokenizer.from_pretrained(model_name)
44
  model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
45
  model.eval()