### model # model_name_or_path: xtuner/llava-llama-3-8b-v1_1-hf # model_name_or_path: Intel/llava-llama-3-8b # model_name_or_path: ./models/Offical_models/Intel--llava-llama-3-8b # model_name_or_path: lmms-lab/llama3-llava-next-8b # model_name_or_path: llava-hf/llava-1.5-7b-hf # model_name_or_path: llava-hf/llama3-llava-next-8b-hf Qwen/Qwen2.5-VL-7B # model_name_or_path: Qwen/Qwen2.5-VL-7B-Instruct model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct trust_remote_code: true train_from_scratch: false # image_max_pixels: 262144 # video_max_pixels: 16384 ### method stage: sft do_train: true finetuning_type: lora lora_rank: 64 lora_alpha: 16 lora_dropout: 0 lora_target: all # lora_target: v_proj,o_proj,q_proj,k_proj,molecule_projector.linear_1,molecule_projector.linear_2 ### Full # finetuning_type: full # freeze_vision_tower: true # choices: [true, false] # freeze_multi_modal_projector: true # choices: [true, false] # freeze_language_model: false # choices: [true, false] # deepspeed: examples/deepspeed/ds_z3_config.json # choices: [ds_z0_config.json, ds_z2_config.json, ds_z3_config.json] ### dataset dataset_dir: ./data dataset: mol-instruct # dataset: llava_1k_en # template: llava_next_llama3 # template: llava_next # template: qwen2_vl template: llama3 # cutoff_len: 2048 cutoff_len: 4096 max_samples: 1000000 overwrite_cache: true preprocessing_num_workers: 16 dataloader_num_workers: 8 ### output output_dir: saves/mol-instruct logging_steps: 10 save_steps: 1000 plot_loss: true overwrite_output_dir: true ### train per_device_train_batch_size: 8 gradient_accumulation_steps: 8 learning_rate: 1.0e-4 # learning_rate: 5e-5 num_train_epochs: 3.0 lr_scheduler_type: cosine warmup_ratio: 0.1 bf16: true plot_loss: true gradient_checkpointing: true ddp_timeout: 180000000 # trust_remote_code: True # optim: adamw_torch cache_dir: ./JUNKS/mol-instruct # # Validate # do_predict: true # predict_with_generate: true # eval_dataset: mllmChem_eval_OCSR, mllmChem_eval_MDG, mllmChem_eval_FRP, mllmChem_eval_RT, mllmChem_eval_RP, mllmChem_eval_PP ## eval # val_size: 0.1 # per_device_eval_batch_size: 1 # eval_strategy: steps # eval_steps: 500