Neura commited on
Commit
e9d3309
·
verified ·
1 Parent(s): e4b8ac3

NeuraOrcaGemma7b

Browse files
Files changed (1) hide show
  1. README.md +98 -170
README.md CHANGED
@@ -1,14 +1,21 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
10
-
11
-
12
  ## Model Details
13
 
14
  ### Model Description
@@ -17,185 +24,106 @@ tags: []
17
 
18
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
  ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
 
 
 
114
 
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
 
189
  ## More Information [optional]
190
-
191
- [More Information Needed]
192
 
193
  ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
-
199
- [More Information Needed]
200
-
201
-
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ language:
5
+ - fa
6
+ pipeline_tag: text-generation
7
+ tags:
8
+ - orca
9
+ - persian_orca
10
+ - neura
11
+ datasets:
12
+ - microsoft/orca-math-word-problems-200k
13
  ---
14
 
15
  # Model Card for Model ID
16
 
17
  <!-- Provide a quick summary of what the model is/does. -->
18
 
 
 
19
  ## Model Details
20
 
21
  ### Model Description
 
24
 
25
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
26
 
27
+ - **Developed by:** Neura company
28
+ - **Funded by [optional]:** Neura
29
+ - **Model type:** gemma7b
30
+ - **Language(s) (NLP):** Persian
31
+ - **Finetuned from model [optional]:** google/gemma-7b-it
 
 
32
 
33
  ### Model Sources [optional]
34
 
35
  <!-- Provide the basic links for the model. -->
36
 
37
+ - **Repository:** https://huggingface.co/google/gemma-7b-it
 
 
38
 
39
  ## Uses
40
 
41
+ Check out also the Google Colab demo to run NeuraOrcaGemma7b on a free-tier Google Colab instance: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1wgiHZIi199MyI4YT3ZBiMj9je2IoA4Jd?usp=sharing)
42
+
43
+
44
+ make sure these packages are installed:
45
+ ```
46
+ !pip install --no-deps xformers accelerate bitsandbytes
47
+ !pip install -q -U transformers
48
+ ```
49
+ ```python
50
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
51
+ import torch
52
+ import os
53
+ MODEL_PATH = "Neurai/NeuraGemma"
54
+ quantization_config = BitsAndBytesConfig(
55
+ load_in_4bit = True,
56
+ bnb_4bit_quant_type="nf4",
57
+ bnb_4bit_compute_dtype=torch.bfloat16,
58
+ bnb_4bit_use_double_quant=True,
59
+ )
60
+
61
+ model = AutoModelForCausalLM.from_pretrained(
62
+ MODEL_PATH,
63
+ device_map = "auto",
64
+ trust_remote_code = True,
65
+ quantization_config=quantization_config,
66
+ )
67
+
68
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
69
+
70
+ input_prompt = """
71
+ ### Instruction:{}
72
+ ### Input:{}
73
+ ### Response:{}"""
74
+
75
+ input_text = input_prompt.format(
76
+ "در مورد سری فوریه بهم توضیح میدی و فرمولش رو برام مینویسی",
77
+ "",
78
+ ""
79
+ )
80
+
81
+ inputs = tokenizer([input_text], return_tensors = "pt").to("cuda")
82
+ outputs = model.generate(**inputs, max_new_tokens = 300, use_cache = True)
83
+ response = tokenizer.batch_decode(outputs)[0]
84
+ ```
85
+ Generated text :
86
+ ```
87
+ سری فوریه یک سری ریاضی است که برای نمایش یک تابع پیوسته و متناوب در یک بازه زمانی معین استفاده می شود. این نام از ریاضیدان فرانسوی آگوستین-لویی کوشی گرفته شده است که آن را در سال 1826 معرفی کرد.
88
+
89
+ فرمول سری فوریه به صورت زیر است:
90
+
91
+ f(x) = a0 + sum(an * cos(n*pi*x/L)) + sum(bn * sin(n*pi*x/L))
92
+
93
+ که در آن:
94
+
95
+ - f(x) تابع پیوسته و متناوب در بازه زمانی [(-L/2, L/2] است
96
+ - a0 مقدار میانگین مربع f(x) در بازه زمانی [(-L/2, L/2] است
97
+ - an ضریب سری برای n-th term است
98
+ - bn ضریب سری برای n-th term است
99
+ - L طول بازه زمانی است
100
+ - n یک عدد صحیح مثبت است
101
+ - x یک متغیر واقعی است
102
+ - pi (pi) یک ثابت ریاضی است
103
+
104
+ برای یافتن ضرایب سری، باید f(x) را در بازه زمانی [(-L/2, L/2] با استفاده از فرمول های زیر تجزیه کنیم:
105
+
106
+ an = (1/L) * int(-L/2, L/2) f(x) * cos(n*pi*x/L) dx
107
+ bn = (1/L) * int(-L/2, L/2) f(x) * sin(n*pi*x/L) dx
108
+
109
+ که در آن:
110
+
111
+ - int نشان دهنده انتگرال است
112
+ - L طول بازه زمانی است
113
+ - n یک عدد صحیح مثبت است
114
+ - x یک متغیر واقعی است
115
+ - f(x) تابع پیوسته و متناوب در بازه زمانی [(-L/2, L/2] است
116
+ - pi (pi) یک ثابت ریاضی است
117
+
118
+ پس از یافتن ضرایب سری، می توان از فرمول سری فوریه برای نمایش f(x) در بازه زمانی [(-L/2, L/2] استفاده کرد.<eos>
119
+ ```
120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121
 
122
  ## More Information [optional]
123
+ https://neura.info
 
124
 
125
  ## Model Card Authors [optional]
126
+ Esmaeil Zahedi, Mohsen Yazdinejad
 
127
 
128
  ## Model Card Contact
129