File size: 2,415 Bytes
			
			| 36a53a4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | """
NeuralQuantum Ollama Configuration for Hugging Face Transformers
"""
from transformers import PretrainedConfig
class NeuralQuantumOllamaConfig(PretrainedConfig):
    """Configuration class for NeuralQuantum Ollama model"""
    
    model_type = "neuralquantum_ollama"
    
    def __init__(
        self,
        vocab_size=50257,
        hidden_size=768,
        num_attention_heads=12,
        num_hidden_layers=12,
        intermediate_size=3072,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=2048,
        type_vocab_size=2,
        initializer_range=0.02,
        layer_norm_eps=1e-12,
        use_cache=True,
        quantum_enhancement=True,
        quantum_layers=6,
        quantum_circuit_depth=12,
        quantum_optimization="vqe",
        hybrid_mode=True,
        ollama_optimized=True,
        temperature=0.7,
        top_p=0.9,
        top_k=40,
        repeat_penalty=1.1,
        num_ctx=2048,
        num_predict=512,
        torch_dtype="float16",
        **kwargs
    ):
        super().__init__(**kwargs)
        
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_attention_heads = num_attention_heads
        self.num_hidden_layers = num_hidden_layers
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.use_cache = use_cache
        
        # Quantum-specific parameters
        self.quantum_enhancement = quantum_enhancement
        self.quantum_layers = quantum_layers
        self.quantum_circuit_depth = quantum_circuit_depth
        self.quantum_optimization = quantum_optimization
        self.hybrid_mode = hybrid_mode
        self.ollama_optimized = ollama_optimized
        
        # Ollama-specific parameters
        self.temperature = temperature
        self.top_p = top_p
        self.top_k = top_k
        self.repeat_penalty = repeat_penalty
        self.num_ctx = num_ctx
        self.num_predict = num_predict
        self.torch_dtype = torch_dtype | 
