""" NeuralQuantum Ollama Configuration for Hugging Face Transformers """ from transformers import PretrainedConfig class NeuralQuantumOllamaConfig(PretrainedConfig): """Configuration class for NeuralQuantum Ollama model""" model_type = "neuralquantum_ollama" def __init__( self, vocab_size=50257, hidden_size=768, num_attention_heads=12, num_hidden_layers=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=2048, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, use_cache=True, quantum_enhancement=True, quantum_layers=6, quantum_circuit_depth=12, quantum_optimization="vqe", hybrid_mode=True, ollama_optimized=True, temperature=0.7, top_p=0.9, top_k=40, repeat_penalty=1.1, num_ctx=2048, num_predict=512, torch_dtype="float16", **kwargs ): super().__init__(**kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.use_cache = use_cache # Quantum-specific parameters self.quantum_enhancement = quantum_enhancement self.quantum_layers = quantum_layers self.quantum_circuit_depth = quantum_circuit_depth self.quantum_optimization = quantum_optimization self.hybrid_mode = hybrid_mode self.ollama_optimized = ollama_optimized # Ollama-specific parameters self.temperature = temperature self.top_p = top_p self.top_k = top_k self.repeat_penalty = repeat_penalty self.num_ctx = num_ctx self.num_predict = num_predict self.torch_dtype = torch_dtype