Upload epilepsy_detection_model.py
Browse files- v1/epilepsy_detection_model.py +406 -0
v1/epilepsy_detection_model.py
ADDED
|
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import ast
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
from torch.utils.data import Dataset, DataLoader
|
| 8 |
+
from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score, f1_score
|
| 9 |
+
import matplotlib.pyplot as plt
|
| 10 |
+
import seaborn as sns
|
| 11 |
+
from tqdm import tqdm
|
| 12 |
+
import warnings
|
| 13 |
+
warnings.filterwarnings('ignore')
|
| 14 |
+
|
| 15 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 16 |
+
print(f"Using device: {device}")
|
| 17 |
+
|
| 18 |
+
class EpilepsyDataset(Dataset):
|
| 19 |
+
def __init__(self, csv_path):
|
| 20 |
+
self.data = pd.read_csv(csv_path)
|
| 21 |
+
|
| 22 |
+
def __len__(self):
|
| 23 |
+
return len(self.data)
|
| 24 |
+
|
| 25 |
+
def __getitem__(self, idx):
|
| 26 |
+
# Parse the data string to list
|
| 27 |
+
data_list = ast.literal_eval(self.data.iloc[idx]['data'])
|
| 28 |
+
data_tensor = torch.FloatTensor(data_list)
|
| 29 |
+
label = torch.LongTensor([self.data.iloc[idx]['label']])[0]
|
| 30 |
+
return data_tensor, label
|
| 31 |
+
|
| 32 |
+
class MultiHeadAttention(nn.Module):
|
| 33 |
+
def __init__(self, d_model, num_heads, dropout=0.1):
|
| 34 |
+
super().__init__()
|
| 35 |
+
assert d_model % num_heads == 0
|
| 36 |
+
|
| 37 |
+
self.d_model = d_model
|
| 38 |
+
self.num_heads = num_heads
|
| 39 |
+
self.d_k = d_model // num_heads
|
| 40 |
+
|
| 41 |
+
self.W_q = nn.Linear(d_model, d_model)
|
| 42 |
+
self.W_k = nn.Linear(d_model, d_model)
|
| 43 |
+
self.W_v = nn.Linear(d_model, d_model)
|
| 44 |
+
self.W_o = nn.Linear(d_model, d_model)
|
| 45 |
+
|
| 46 |
+
self.dropout = nn.Dropout(dropout)
|
| 47 |
+
|
| 48 |
+
def forward(self, x):
|
| 49 |
+
batch_size = x.size(0)
|
| 50 |
+
|
| 51 |
+
Q = self.W_q(x).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
|
| 52 |
+
K = self.W_k(x).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
|
| 53 |
+
V = self.W_v(x).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
|
| 54 |
+
|
| 55 |
+
scores = torch.matmul(Q, K.transpose(-2, -1)) / np.sqrt(self.d_k)
|
| 56 |
+
attn_weights = F.softmax(scores, dim=-1)
|
| 57 |
+
attn_weights = self.dropout(attn_weights)
|
| 58 |
+
|
| 59 |
+
context = torch.matmul(attn_weights, V)
|
| 60 |
+
context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.d_model)
|
| 61 |
+
|
| 62 |
+
output = self.W_o(context)
|
| 63 |
+
return output, attn_weights
|
| 64 |
+
|
| 65 |
+
class TemporalConvBlock(nn.Module):
|
| 66 |
+
def __init__(self, in_channels, out_channels, kernel_size, dilation, dropout=0.2):
|
| 67 |
+
super().__init__()
|
| 68 |
+
padding = (kernel_size - 1) * dilation // 2
|
| 69 |
+
|
| 70 |
+
self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size,
|
| 71 |
+
padding=padding, dilation=dilation)
|
| 72 |
+
self.bn1 = nn.BatchNorm1d(out_channels)
|
| 73 |
+
self.relu1 = nn.ReLU()
|
| 74 |
+
self.dropout1 = nn.Dropout(dropout)
|
| 75 |
+
|
| 76 |
+
self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size,
|
| 77 |
+
padding=padding, dilation=dilation)
|
| 78 |
+
self.bn2 = nn.BatchNorm1d(out_channels)
|
| 79 |
+
self.relu2 = nn.ReLU()
|
| 80 |
+
self.dropout2 = nn.Dropout(dropout)
|
| 81 |
+
|
| 82 |
+
self.downsample = nn.Conv1d(in_channels, out_channels, 1) if in_channels != out_channels else None
|
| 83 |
+
|
| 84 |
+
def forward(self, x):
|
| 85 |
+
residual = x if self.downsample is None else self.downsample(x)
|
| 86 |
+
|
| 87 |
+
out = self.conv1(x)
|
| 88 |
+
out = self.bn1(out)
|
| 89 |
+
out = self.relu1(out)
|
| 90 |
+
out = self.dropout1(out)
|
| 91 |
+
|
| 92 |
+
out = self.conv2(out)
|
| 93 |
+
out = self.bn2(out)
|
| 94 |
+
|
| 95 |
+
out = out + residual
|
| 96 |
+
out = self.relu2(out)
|
| 97 |
+
out = self.dropout2(out)
|
| 98 |
+
|
| 99 |
+
return out
|
| 100 |
+
|
| 101 |
+
class ChannelAttention(nn.Module):
|
| 102 |
+
def __init__(self, channels, reduction=8):
|
| 103 |
+
super().__init__()
|
| 104 |
+
self.avg_pool = nn.AdaptiveAvgPool1d(1)
|
| 105 |
+
self.max_pool = nn.AdaptiveMaxPool1d(1)
|
| 106 |
+
|
| 107 |
+
self.fc = nn.Sequential(
|
| 108 |
+
nn.Linear(channels, channels // reduction, bias=False),
|
| 109 |
+
nn.ReLU(),
|
| 110 |
+
nn.Linear(channels // reduction, channels, bias=False),
|
| 111 |
+
nn.Sigmoid()
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
def forward(self, x):
|
| 115 |
+
b, c, _ = x.size()
|
| 116 |
+
|
| 117 |
+
avg_out = self.fc(self.avg_pool(x).view(b, c))
|
| 118 |
+
max_out = self.fc(self.max_pool(x).view(b, c))
|
| 119 |
+
|
| 120 |
+
out = avg_out + max_out
|
| 121 |
+
return x * out.view(b, c, 1)
|
| 122 |
+
|
| 123 |
+
class AdvancedEpilepsyDetector(nn.Module):
|
| 124 |
+
def __init__(self, input_dim=178, num_classes=2, dropout=0.3):
|
| 125 |
+
super().__init__()
|
| 126 |
+
|
| 127 |
+
self.input_proj = nn.Linear(input_dim, 256)
|
| 128 |
+
self.input_bn = nn.BatchNorm1d(256)
|
| 129 |
+
|
| 130 |
+
self.tcn_blocks = nn.ModuleList([
|
| 131 |
+
TemporalConvBlock(1, 64, kernel_size=7, dilation=1, dropout=dropout),
|
| 132 |
+
TemporalConvBlock(64, 128, kernel_size=5, dilation=2, dropout=dropout),
|
| 133 |
+
TemporalConvBlock(128, 256, kernel_size=3, dilation=4, dropout=dropout),
|
| 134 |
+
TemporalConvBlock(256, 256, kernel_size=3, dilation=8, dropout=dropout),
|
| 135 |
+
])
|
| 136 |
+
|
| 137 |
+
self.channel_attn = ChannelAttention(256)
|
| 138 |
+
|
| 139 |
+
self.mha1 = MultiHeadAttention(256, num_heads=8, dropout=dropout)
|
| 140 |
+
self.mha2 = MultiHeadAttention(256, num_heads=8, dropout=dropout)
|
| 141 |
+
|
| 142 |
+
self.layer_norm1 = nn.LayerNorm(256)
|
| 143 |
+
self.layer_norm2 = nn.LayerNorm(256)
|
| 144 |
+
|
| 145 |
+
self.ffn = nn.Sequential(
|
| 146 |
+
nn.Linear(256, 512),
|
| 147 |
+
nn.ReLU(),
|
| 148 |
+
nn.Dropout(dropout),
|
| 149 |
+
nn.Linear(512, 256),
|
| 150 |
+
nn.Dropout(dropout)
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
self.bilstm = nn.LSTM(256, 128, num_layers=2, batch_first=True,
|
| 154 |
+
bidirectional=True, dropout=dropout)
|
| 155 |
+
|
| 156 |
+
self.classifier = nn.Sequential(
|
| 157 |
+
nn.Linear(256 + 256, 512), # TCN output + LSTM output
|
| 158 |
+
nn.BatchNorm1d(512),
|
| 159 |
+
nn.ReLU(),
|
| 160 |
+
nn.Dropout(dropout),
|
| 161 |
+
|
| 162 |
+
nn.Linear(512, 256),
|
| 163 |
+
nn.BatchNorm1d(256),
|
| 164 |
+
nn.ReLU(),
|
| 165 |
+
nn.Dropout(dropout),
|
| 166 |
+
|
| 167 |
+
nn.Linear(256, 128),
|
| 168 |
+
nn.BatchNorm1d(128),
|
| 169 |
+
nn.ReLU(),
|
| 170 |
+
nn.Dropout(dropout),
|
| 171 |
+
|
| 172 |
+
nn.Linear(128, num_classes)
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
def forward(self, x):
|
| 176 |
+
batch_size = x.size(0)
|
| 177 |
+
|
| 178 |
+
x_proj = self.input_proj(x)
|
| 179 |
+
x_proj = self.input_bn(x_proj)
|
| 180 |
+
x_proj = F.relu(x_proj)
|
| 181 |
+
|
| 182 |
+
x_tcn = x_proj.unsqueeze(1)
|
| 183 |
+
for tcn_block in self.tcn_blocks:
|
| 184 |
+
x_tcn = tcn_block(x_tcn)
|
| 185 |
+
|
| 186 |
+
x_tcn = self.channel_attn(x_tcn)
|
| 187 |
+
x_tcn = x_tcn.squeeze(1) if x_tcn.dim() == 3 and x_tcn.size(1) == 1 else x_tcn.mean(dim=-1)
|
| 188 |
+
|
| 189 |
+
x_trans = x_proj.unsqueeze(1)
|
| 190 |
+
|
| 191 |
+
attn_out1, _ = self.mha1(x_trans)
|
| 192 |
+
x_trans = self.layer_norm1(x_trans + attn_out1)
|
| 193 |
+
|
| 194 |
+
attn_out2, _ = self.mha2(x_trans)
|
| 195 |
+
x_trans = self.layer_norm2(x_trans + attn_out2)
|
| 196 |
+
|
| 197 |
+
ffn_out = self.ffn(x_trans)
|
| 198 |
+
x_trans = x_trans + ffn_out
|
| 199 |
+
|
| 200 |
+
lstm_out, _ = self.bilstm(x_trans)
|
| 201 |
+
lstm_out = lstm_out[:, -1, :]
|
| 202 |
+
|
| 203 |
+
combined = torch.cat([x_tcn, lstm_out], dim=1)
|
| 204 |
+
|
| 205 |
+
output = self.classifier(combined)
|
| 206 |
+
|
| 207 |
+
return output
|
| 208 |
+
|
| 209 |
+
class FocalLoss(nn.Module):
|
| 210 |
+
def __init__(self, alpha=0.25, gamma=2):
|
| 211 |
+
super().__init__()
|
| 212 |
+
self.alpha = alpha
|
| 213 |
+
self.gamma = gamma
|
| 214 |
+
|
| 215 |
+
def forward(self, inputs, targets):
|
| 216 |
+
ce_loss = F.cross_entropy(inputs, targets, reduction='none')
|
| 217 |
+
pt = torch.exp(-ce_loss)
|
| 218 |
+
focal_loss = self.alpha * (1-pt)**self.gamma * ce_loss
|
| 219 |
+
return focal_loss.mean()
|
| 220 |
+
|
| 221 |
+
def train_epoch(model, dataloader, criterion, optimizer, device):
|
| 222 |
+
model.train()
|
| 223 |
+
running_loss = 0.0
|
| 224 |
+
all_preds = []
|
| 225 |
+
all_labels = []
|
| 226 |
+
|
| 227 |
+
pbar = tqdm(dataloader, desc='Training')
|
| 228 |
+
for data, labels in pbar:
|
| 229 |
+
data, labels = data.to(device), labels.to(device)
|
| 230 |
+
|
| 231 |
+
optimizer.zero_grad()
|
| 232 |
+
outputs = model(data)
|
| 233 |
+
loss = criterion(outputs, labels)
|
| 234 |
+
loss.backward()
|
| 235 |
+
|
| 236 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
|
| 237 |
+
|
| 238 |
+
optimizer.step()
|
| 239 |
+
|
| 240 |
+
running_loss += loss.item()
|
| 241 |
+
_, preds = torch.max(outputs, 1)
|
| 242 |
+
all_preds.extend(preds.cpu().numpy())
|
| 243 |
+
all_labels.extend(labels.cpu().numpy())
|
| 244 |
+
|
| 245 |
+
pbar.set_postfix({'loss': loss.item()})
|
| 246 |
+
|
| 247 |
+
epoch_loss = running_loss / len(dataloader)
|
| 248 |
+
epoch_f1 = f1_score(all_labels, all_preds, average='weighted')
|
| 249 |
+
|
| 250 |
+
return epoch_loss, epoch_f1
|
| 251 |
+
|
| 252 |
+
def validate(model, dataloader, criterion, device):
|
| 253 |
+
model.eval()
|
| 254 |
+
running_loss = 0.0
|
| 255 |
+
all_preds = []
|
| 256 |
+
all_labels = []
|
| 257 |
+
all_probs = []
|
| 258 |
+
|
| 259 |
+
with torch.no_grad():
|
| 260 |
+
for data, labels in tqdm(dataloader, desc='Validation'):
|
| 261 |
+
data, labels = data.to(device), labels.to(device)
|
| 262 |
+
|
| 263 |
+
outputs = model(data)
|
| 264 |
+
loss = criterion(outputs, labels)
|
| 265 |
+
|
| 266 |
+
running_loss += loss.item()
|
| 267 |
+
probs = F.softmax(outputs, dim=1)
|
| 268 |
+
_, preds = torch.max(outputs, 1)
|
| 269 |
+
|
| 270 |
+
all_preds.extend(preds.cpu().numpy())
|
| 271 |
+
all_labels.extend(labels.cpu().numpy())
|
| 272 |
+
all_probs.extend(probs.cpu().numpy()[:, 1])
|
| 273 |
+
|
| 274 |
+
epoch_loss = running_loss / len(dataloader)
|
| 275 |
+
epoch_f1 = f1_score(all_labels, all_preds, average='weighted')
|
| 276 |
+
epoch_auc = roc_auc_score(all_labels, all_probs)
|
| 277 |
+
|
| 278 |
+
return epoch_loss, epoch_f1, epoch_auc, all_preds, all_labels
|
| 279 |
+
|
| 280 |
+
def main():
|
| 281 |
+
BATCH_SIZE = 64
|
| 282 |
+
LEARNING_RATE = 0.001
|
| 283 |
+
NUM_EPOCHS = 100
|
| 284 |
+
PATIENCE = 15
|
| 285 |
+
|
| 286 |
+
print("Loading datasets...")
|
| 287 |
+
train_dataset = EpilepsyDataset(r'train/path')
|
| 288 |
+
val_dataset = EpilepsyDataset(r'val/path')
|
| 289 |
+
test_dataset = EpilepsyDataset(r'test/path')
|
| 290 |
+
|
| 291 |
+
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=0)
|
| 292 |
+
val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=0)
|
| 293 |
+
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=0)
|
| 294 |
+
|
| 295 |
+
print(f"Train samples: {len(train_dataset)}")
|
| 296 |
+
print(f"Val samples: {len(val_dataset)}")
|
| 297 |
+
print(f"Test samples: {len(test_dataset)}")
|
| 298 |
+
|
| 299 |
+
model = AdvancedEpilepsyDetector(input_dim=178, num_classes=2, dropout=0.3).to(device)
|
| 300 |
+
|
| 301 |
+
total_params = sum(p.numel() for p in model.parameters())
|
| 302 |
+
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
| 303 |
+
print(f"\nTotal parameters: {total_params:,}")
|
| 304 |
+
print(f"Trainable parameters: {trainable_params:,}")
|
| 305 |
+
|
| 306 |
+
criterion = FocalLoss(alpha=0.25, gamma=2)
|
| 307 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr=LEARNING_RATE, weight_decay=0.01)
|
| 308 |
+
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5,
|
| 309 |
+
patience=5, verbose=True)
|
| 310 |
+
|
| 311 |
+
best_val_f1 = 0.0
|
| 312 |
+
patience_counter = 0
|
| 313 |
+
train_losses, val_losses = [], []
|
| 314 |
+
train_f1s, val_f1s = [], []
|
| 315 |
+
|
| 316 |
+
print("\nStarting training...\n")
|
| 317 |
+
|
| 318 |
+
for epoch in range(NUM_EPOCHS):
|
| 319 |
+
print(f"Epoch {epoch+1}/{NUM_EPOCHS}")
|
| 320 |
+
print("-" * 50)
|
| 321 |
+
|
| 322 |
+
train_loss, train_f1 = train_epoch(model, train_loader, criterion, optimizer, device)
|
| 323 |
+
|
| 324 |
+
val_loss, val_f1, val_auc, _, _ = validate(model, val_loader, criterion, device)
|
| 325 |
+
|
| 326 |
+
scheduler.step(val_loss)
|
| 327 |
+
|
| 328 |
+
train_losses.append(train_loss)
|
| 329 |
+
val_losses.append(val_loss)
|
| 330 |
+
train_f1s.append(train_f1)
|
| 331 |
+
val_f1s.append(val_f1)
|
| 332 |
+
|
| 333 |
+
print(f"Train Loss: {train_loss:.4f} | Train F1: {train_f1:.4f}")
|
| 334 |
+
print(f"Val Loss: {val_loss:.4f} | Val F1: {val_f1:.4f} | Val AUC: {val_auc:.4f}\n")
|
| 335 |
+
|
| 336 |
+
if val_f1 > best_val_f1:
|
| 337 |
+
best_val_f1 = val_f1
|
| 338 |
+
patience_counter = 0
|
| 339 |
+
torch.save({
|
| 340 |
+
'epoch': epoch,
|
| 341 |
+
'model_state_dict': model.state_dict(),
|
| 342 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
| 343 |
+
'val_f1': val_f1,
|
| 344 |
+
'val_auc': val_auc
|
| 345 |
+
}, r'best_epilepsy_model.pth')
|
| 346 |
+
print(f"[SAVED] Model saved with Val F1: {val_f1:.4f}\n")
|
| 347 |
+
else:
|
| 348 |
+
patience_counter += 1
|
| 349 |
+
if patience_counter >= PATIENCE:
|
| 350 |
+
print(f"\nEarly stopping triggered after {epoch+1} epochs")
|
| 351 |
+
break
|
| 352 |
+
|
| 353 |
+
print("\nLoading best model for testing...")
|
| 354 |
+
checkpoint = torch.load(r'best_epilepsy_model.pth')
|
| 355 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
| 356 |
+
|
| 357 |
+
print("\nEvaluating on test set...")
|
| 358 |
+
test_loss, test_f1, test_auc, test_preds, test_labels = validate(model, test_loader, criterion, device)
|
| 359 |
+
|
| 360 |
+
print(f"\nTest Results:")
|
| 361 |
+
print(f"Test Loss: {test_loss:.4f}")
|
| 362 |
+
print(f"Test F1: {test_f1:.4f}")
|
| 363 |
+
print(f"Test AUC: {test_auc:.4f}")
|
| 364 |
+
|
| 365 |
+
print("\nClassification Report:")
|
| 366 |
+
print(classification_report(test_labels, test_preds, target_names=['Non-Seizure', 'Seizure']))
|
| 367 |
+
|
| 368 |
+
# Confusion matrix
|
| 369 |
+
cm = confusion_matrix(test_labels, test_preds)
|
| 370 |
+
plt.figure(figsize=(10, 8))
|
| 371 |
+
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
|
| 372 |
+
xticklabels=['Non-Seizure', 'Seizure'],
|
| 373 |
+
yticklabels=['Non-Seizure', 'Seizure'])
|
| 374 |
+
plt.title('Confusion Matrix - Epilepsy Detection')
|
| 375 |
+
plt.ylabel('True Label')
|
| 376 |
+
plt.xlabel('Predicted Label')
|
| 377 |
+
plt.savefig(r'confusion_matrix.png', dpi=300, bbox_inches='tight')
|
| 378 |
+
plt.close()
|
| 379 |
+
|
| 380 |
+
plt.figure(figsize=(15, 5))
|
| 381 |
+
|
| 382 |
+
plt.subplot(1, 2, 1)
|
| 383 |
+
plt.plot(train_losses, label='Train Loss')
|
| 384 |
+
plt.plot(val_losses, label='Val Loss')
|
| 385 |
+
plt.xlabel('Epoch')
|
| 386 |
+
plt.ylabel('Loss')
|
| 387 |
+
plt.title('Training and Validation Loss')
|
| 388 |
+
plt.legend()
|
| 389 |
+
plt.grid(True)
|
| 390 |
+
|
| 391 |
+
plt.subplot(1, 2, 2)
|
| 392 |
+
plt.plot(train_f1s, label='Train F1')
|
| 393 |
+
plt.plot(val_f1s, label='Val F1')
|
| 394 |
+
plt.xlabel('Epoch')
|
| 395 |
+
plt.ylabel('F1 Score')
|
| 396 |
+
plt.title('Training and Validation F1 Score')
|
| 397 |
+
plt.legend()
|
| 398 |
+
plt.grid(True)
|
| 399 |
+
|
| 400 |
+
plt.savefig(r'training_curves.png', dpi=300, bbox_inches='tight')
|
| 401 |
+
plt.close()
|
| 402 |
+
|
| 403 |
+
print("\nTraining completed! Results saved.")
|
| 404 |
+
|
| 405 |
+
if __name__ == "__main__":
|
| 406 |
+
main()
|