Delta-Vector commited on
Commit
f359a60
·
verified ·
1 Parent(s): e92e499

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
chat_template.jinja ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if messages[0]["role"] == "system" %}
2
+ {%- set system_message = messages[0]["content"] %}
3
+ {%- set loop_messages = messages[1:] %}
4
+ {%- else %}
5
+ {%- set loop_messages = messages %}
6
+ {%- endif %}
7
+ {%- if not tools is defined %}
8
+ {%- set tools = none %}
9
+ {%- endif %}
10
+ {%- set user_messages = loop_messages | selectattr("role", "equalto", "user") | list %}
11
+
12
+ {#- This block checks for alternating user/assistant messages, skipping tool calling messages #}
13
+ {%- set ns = namespace() %}
14
+ {%- set ns.index = 0 %}
15
+ {%- for message in loop_messages %}
16
+ {%- if not (message.role == "tool" or message.role == "tool_results" or (message.tool_calls is defined and message.tool_calls is not none)) %}
17
+ {%- if (message["role"] == "user") != (ns.index % 2 == 0) %}
18
+ {{- raise_exception("After the optional system message, conversation roles must alternate user/assistant/user/assistant/...") }}
19
+ {%- endif %}
20
+ {%- set ns.index = ns.index + 1 %}
21
+ {%- endif %}
22
+ {%- endfor %}
23
+
24
+ {{- bos_token }}
25
+ {%- for message in loop_messages %}
26
+ {%- if message["role"] == "user" %}
27
+ {%- if tools is not none and (message == user_messages[-1]) %}
28
+ {{- "[AVAILABLE_TOOLS][" }}
29
+ {%- for tool in tools %}
30
+ {%- set tool = tool.function %}
31
+ {{- '{"type": "function", "function": {' }}
32
+ {%- for key, val in tool.items() if key != "return" %}
33
+ {%- if val is string %}
34
+ {{- '"' + key + '": "' + val + '"' }}
35
+ {%- else %}
36
+ {{- '"' + key + '": ' + val|tojson }}
37
+ {%- endif %}
38
+ {%- if not loop.last %}
39
+ {{- ", " }}
40
+ {%- endif %}
41
+ {%- endfor %}
42
+ {{- "}}" }}
43
+ {%- if not loop.last %}
44
+ {{- ", " }}
45
+ {%- else %}
46
+ {{- "]" }}
47
+ {%- endif %}
48
+ {%- endfor %}
49
+ {{- "[/AVAILABLE_TOOLS]" }}
50
+ {%- endif %}
51
+ {%- if loop.last and system_message is defined %}
52
+ {{- "<|im_start|>user" + system_message + "\n\n" + message["content"] + "<|im_start|>assistant" }}
53
+ {%- else %}
54
+ {{- "<|im_start|>user" + message["content"] + "<|im_start|>assistant" }}
55
+ {%- endif %}
56
+ {%- elif (message.tool_calls is defined and message.tool_calls is not none) %}
57
+ {{- "[TOOL_CALLS][" }}
58
+ {%- for tool_call in message.tool_calls %}
59
+ {%- set out = tool_call.function|tojson %}
60
+ {{- out[:-1] }}
61
+ {%- if not tool_call.id is defined or tool_call.id|length != 9 %}
62
+ {{- raise_exception("Tool call IDs should be alphanumeric strings with length 9!") }}
63
+ {%- endif %}
64
+ {{- ', "id": "' + tool_call.id + '"}' }}
65
+ {%- if not loop.last %}
66
+ {{- ", " }}
67
+ {%- else %}
68
+ {{- "]" + eos_token }}
69
+ {%- endif %}
70
+ {%- endfor %}
71
+ {%- elif message["role"] == "assistant" %}
72
+ {{- message["content"] + eos_token}}
73
+ {%- elif message["role"] == "tool_results" or message["role"] == "tool" %}
74
+ {%- if message.content is defined and message.content.content is defined %}
75
+ {%- set content = message.content.content %}
76
+ {%- else %}
77
+ {%- set content = message.content %}
78
+ {%- endif %}
79
+ {{- '[TOOL_RESULTS]{"content": ' + content|string + ", " }}
80
+ {%- if not message.tool_call_id is defined or message.tool_call_id|length != 9 %}
81
+ {{- raise_exception("Tool call IDs should be alphanumeric strings with length 9!") }}
82
+ {%- endif %}
83
+ {{- '"call_id": "' + message.tool_call_id + '"}[/TOOL_RESULTS]' }}
84
+ {%- else %}
85
+ {{- raise_exception("Only user and assistant roles are supported, with the exception of an initial optional system message!") }}
86
+ {%- endif %}
87
+ {%- endfor %}
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MistralForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "head_dim": 128,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 5120,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 131072,
14
+ "model_type": "mistral",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 40,
17
+ "num_key_value_heads": 8,
18
+ "pad_token_id": 10,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.53.1",
25
+ "unsloth_version": "2024.9",
26
+ "use_cache": false,
27
+ "vocab_size": 131072
28
+ }
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "do_sample": true,
5
+ "eos_token_id": 2,
6
+ "max_length": 1024000,
7
+ "pad_token_id": 10,
8
+ "transformers_version": "4.53.1"
9
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step88
model-00001-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7779bb4b0c9f79d3c82d551acdb2c74eb68c5685e67f47e97705655a7da344c4
3
+ size 4865522496
model-00002-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d5f11c486437e9b39fd461bf1922f58d084e9c7daef690c3425b02bc74c4e4a
3
+ size 4907529424
model-00003-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69e1d2aa7f06d05a4c648106c69154b94142c4923d9f221e349e5f733392a8a3
3
+ size 4907529456
model-00004-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae5716803af1fa55c1406121759fc914fbfcfb30a22d115cdd25ffecb4610da7
3
+ size 4907529456
model-00005-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f0c1f6517d98b46d2bcf55c5b1e872779cb3fe42de69647be2164d0acb771b5
3
+ size 4907496272
model.safetensors.index.json ADDED
@@ -0,0 +1,371 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 12247782400,
4
+ "total_size": 24495564800
5
+ },
6
+ "weight_map": {
7
+ "lm_head.weight": "model-00005-of-00005.safetensors",
8
+ "model.embed_tokens.weight": "model-00001-of-00005.safetensors",
9
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
10
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
11
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
12
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
13
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
17
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
18
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
19
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
20
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
21
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
22
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
23
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
24
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
25
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
26
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
27
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00005.safetensors",
28
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
29
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
30
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
31
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
32
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
33
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
34
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
35
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
36
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00005.safetensors",
37
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
38
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
39
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
40
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
41
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
42
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
43
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
44
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
45
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00005.safetensors",
46
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
47
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
48
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
49
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
50
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
51
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
52
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
53
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
54
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00005.safetensors",
55
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
56
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
57
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
58
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
59
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
60
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
61
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
62
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
63
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00005.safetensors",
64
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
65
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
66
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
67
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
68
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
69
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
70
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
71
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
72
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00005.safetensors",
73
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
74
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
75
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
76
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
77
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
78
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
79
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
80
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
81
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00005.safetensors",
82
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
83
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
84
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
85
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
86
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
87
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
88
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
89
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
90
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00005.safetensors",
91
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
92
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
93
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
94
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
95
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
96
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
97
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
98
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
99
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00005.safetensors",
100
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
101
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
102
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
103
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
104
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
105
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
106
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
107
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
108
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00005.safetensors",
109
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
110
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
111
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
112
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
113
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
114
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
115
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
116
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
117
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
118
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
119
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
120
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
121
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
122
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
123
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
124
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
125
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
126
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00005.safetensors",
127
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
128
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
129
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
130
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
131
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
132
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
133
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
134
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
135
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00005.safetensors",
136
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
137
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
138
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
139
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
140
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
141
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
142
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
143
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
144
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00005.safetensors",
145
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
146
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
147
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
148
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
149
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
150
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
151
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
152
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
153
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00005.safetensors",
154
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
155
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
156
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
157
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
158
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
159
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
160
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
161
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
162
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00005.safetensors",
163
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
164
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
165
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
166
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
167
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
168
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
169
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
170
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
171
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00005.safetensors",
172
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
173
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
174
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
175
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
176
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
177
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
178
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
179
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
180
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00005.safetensors",
181
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
182
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
183
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
184
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
185
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
186
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
187
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
188
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
189
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00005.safetensors",
190
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
191
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
192
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
193
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
194
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
195
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
196
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
197
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
198
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00005.safetensors",
199
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
200
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
201
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
202
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
203
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
204
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
205
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
206
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
207
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00005.safetensors",
208
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
209
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
210
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
211
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
212
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
213
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
214
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
215
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
216
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
217
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
218
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
219
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
220
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
221
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
222
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
223
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
224
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
225
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00005.safetensors",
226
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
227
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
228
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
229
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
230
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
231
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
232
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
233
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
234
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00005.safetensors",
235
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
236
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
237
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
238
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
239
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
240
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
241
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
242
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
243
+ "model.layers.32.input_layernorm.weight": "model-00004-of-00005.safetensors",
244
+ "model.layers.32.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
245
+ "model.layers.32.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
246
+ "model.layers.32.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
247
+ "model.layers.32.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
248
+ "model.layers.32.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
249
+ "model.layers.32.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
250
+ "model.layers.32.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
251
+ "model.layers.32.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
252
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00005.safetensors",
253
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
254
+ "model.layers.33.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
255
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
256
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
257
+ "model.layers.33.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
258
+ "model.layers.33.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
259
+ "model.layers.33.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
260
+ "model.layers.33.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
261
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00005.safetensors",
262
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
263
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
264
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
265
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
266
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
267
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
268
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
269
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
270
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00005.safetensors",
271
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
272
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
273
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
274
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
275
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
276
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
277
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
278
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
279
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00005.safetensors",
280
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
281
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
282
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
283
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
284
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
285
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
286
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
287
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
288
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00005.safetensors",
289
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
290
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
291
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
292
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
293
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
294
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
295
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
296
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
297
+ "model.layers.38.input_layernorm.weight": "model-00005-of-00005.safetensors",
298
+ "model.layers.38.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
299
+ "model.layers.38.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
300
+ "model.layers.38.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
301
+ "model.layers.38.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
302
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
303
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
304
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
305
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
306
+ "model.layers.39.input_layernorm.weight": "model-00005-of-00005.safetensors",
307
+ "model.layers.39.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
308
+ "model.layers.39.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
309
+ "model.layers.39.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
310
+ "model.layers.39.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
311
+ "model.layers.39.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
312
+ "model.layers.39.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
313
+ "model.layers.39.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
314
+ "model.layers.39.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
315
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
316
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
317
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
318
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
319
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
320
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
321
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
322
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
323
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
324
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00005.safetensors",
325
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
326
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
327
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
328
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
329
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
330
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
331
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
332
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
333
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00005.safetensors",
334
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
335
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
336
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
337
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
338
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
339
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
340
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
341
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
342
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00005.safetensors",
343
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
344
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
345
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
346
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
347
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
348
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
349
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
350
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
351
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00005.safetensors",
352
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
353
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
354
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
355
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
356
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
357
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
358
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
359
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
360
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00005.safetensors",
361
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
362
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
363
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
364
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
365
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
366
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
367
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
368
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
369
+ "model.norm.weight": "model-00005-of-00005.safetensors"
370
+ }
371
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f40b7d89ede69f82a73f386707ffa2bc82e5eeef8a79e3a4dd1dc8b090ce35d
3
+ size 16389
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55c34b50cbc9ef0ee16f78568ab8cb9f39fda2528fb528565e4c4e6bbef4b5d1
3
+ size 16389
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6fd420f2a650afc8853dcf4be7b848033a4553571318be351980db83cb07753
3
+ size 16389
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f24da66a8bbec7799b070f8ddce5f2e44fd2bdcde052433a0474aadf2b3e3028
3
+ size 16389
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce4ed0ec5b6b99af767428bd1c70e550c3a87cfcf6b471b0391c3c278894a784
3
+ size 16389
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72eb96462bd64bca2c87e7ff1077864a9d49b25c89f2addef49d882400d6839b
3
+ size 16389
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc83999425f72eeaf8c12a8957680422762a46701bcd05a47249a6fa69666239
3
+ size 16389
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77250f2f6a628fe10f48d8e92f5eac168e6eceb0a77a739ad018bcfa675df1a0
3
+ size 16389
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:381cc5f700aad0e8e77207d9dae7b7c5ccb286497a0e44ec30f3e5a378ef49fc
3
+ size 1465
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|im_end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc07f4f61632a89d8248b43f25649d6cc45200f8709e9d9bcd0414b00a4064e2
3
+ size 17078342
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
@@ -0,0 +1,650 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 3.8351648351648353,
6
+ "eval_steps": 500,
7
+ "global_step": 88,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.04395604395604396,
14
+ "grad_norm": 12.68799877166748,
15
+ "learning_rate": 0.0,
16
+ "loss": 2.3586,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.08791208791208792,
21
+ "grad_norm": 11.960691452026367,
22
+ "learning_rate": 1.0000000000000001e-07,
23
+ "loss": 2.4032,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.13186813186813187,
28
+ "grad_norm": 11.234224319458008,
29
+ "learning_rate": 2.0000000000000002e-07,
30
+ "loss": 2.3596,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.17582417582417584,
35
+ "grad_norm": 11.478860855102539,
36
+ "learning_rate": 3.0000000000000004e-07,
37
+ "loss": 2.359,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.21978021978021978,
42
+ "grad_norm": 11.855159759521484,
43
+ "learning_rate": 4.0000000000000003e-07,
44
+ "loss": 2.389,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.26373626373626374,
49
+ "grad_norm": 12.25625228881836,
50
+ "learning_rate": 5.000000000000001e-07,
51
+ "loss": 2.3624,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.3076923076923077,
56
+ "grad_norm": 11.3080415725708,
57
+ "learning_rate": 6.000000000000001e-07,
58
+ "loss": 2.3715,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.3516483516483517,
63
+ "grad_norm": 11.263334274291992,
64
+ "learning_rate": 7.000000000000001e-07,
65
+ "loss": 2.3607,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.3956043956043956,
70
+ "grad_norm": 10.836712837219238,
71
+ "learning_rate": 8.000000000000001e-07,
72
+ "loss": 2.3603,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.43956043956043955,
77
+ "grad_norm": 10.755544662475586,
78
+ "learning_rate": 9.000000000000001e-07,
79
+ "loss": 2.3942,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.4835164835164835,
84
+ "grad_norm": 10.037590026855469,
85
+ "learning_rate": 1.0000000000000002e-06,
86
+ "loss": 2.3521,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.5274725274725275,
91
+ "grad_norm": 9.6759614944458,
92
+ "learning_rate": 1.1e-06,
93
+ "loss": 2.3864,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.5714285714285714,
98
+ "grad_norm": 9.317275047302246,
99
+ "learning_rate": 1.2000000000000002e-06,
100
+ "loss": 2.3682,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.6153846153846154,
105
+ "grad_norm": 8.477849960327148,
106
+ "learning_rate": 1.3e-06,
107
+ "loss": 2.3351,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.6593406593406593,
112
+ "grad_norm": 7.95522928237915,
113
+ "learning_rate": 1.4000000000000001e-06,
114
+ "loss": 2.316,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.7032967032967034,
119
+ "grad_norm": 7.304463863372803,
120
+ "learning_rate": 1.5e-06,
121
+ "loss": 2.334,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.7472527472527473,
126
+ "grad_norm": 6.289999961853027,
127
+ "learning_rate": 1.6000000000000001e-06,
128
+ "loss": 2.318,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.7912087912087912,
133
+ "grad_norm": 6.027122497558594,
134
+ "learning_rate": 1.7000000000000002e-06,
135
+ "loss": 2.3296,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.8351648351648352,
140
+ "grad_norm": 5.818652629852295,
141
+ "learning_rate": 1.8000000000000001e-06,
142
+ "loss": 2.3141,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.8791208791208791,
147
+ "grad_norm": 4.624997138977051,
148
+ "learning_rate": 1.9000000000000002e-06,
149
+ "loss": 2.3109,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.9230769230769231,
154
+ "grad_norm": 3.5909717082977295,
155
+ "learning_rate": 2.0000000000000003e-06,
156
+ "loss": 2.2997,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.967032967032967,
161
+ "grad_norm": 3.4130618572235107,
162
+ "learning_rate": 2.1000000000000002e-06,
163
+ "loss": 2.3231,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 1.0,
168
+ "grad_norm": 2.9837982654571533,
169
+ "learning_rate": 2.2e-06,
170
+ "loss": 2.29,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 1.043956043956044,
175
+ "grad_norm": 4.985344409942627,
176
+ "learning_rate": 2.3000000000000004e-06,
177
+ "loss": 2.2736,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 1.0879120879120878,
182
+ "grad_norm": 3.360139846801758,
183
+ "learning_rate": 2.4000000000000003e-06,
184
+ "loss": 2.3187,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 1.1318681318681318,
189
+ "grad_norm": 2.8821568489074707,
190
+ "learning_rate": 2.5e-06,
191
+ "loss": 2.2779,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 1.1758241758241759,
196
+ "grad_norm": 2.9288103580474854,
197
+ "learning_rate": 2.6e-06,
198
+ "loss": 2.2737,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 1.2197802197802199,
203
+ "grad_norm": 2.41239595413208,
204
+ "learning_rate": 2.7000000000000004e-06,
205
+ "loss": 2.2987,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 1.2637362637362637,
210
+ "grad_norm": 3.1214678287506104,
211
+ "learning_rate": 2.8000000000000003e-06,
212
+ "loss": 2.2666,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 1.3076923076923077,
217
+ "grad_norm": 1.981587529182434,
218
+ "learning_rate": 2.9e-06,
219
+ "loss": 2.2825,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 1.3516483516483517,
224
+ "grad_norm": 1.6952852010726929,
225
+ "learning_rate": 3e-06,
226
+ "loss": 2.2697,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 1.3956043956043955,
231
+ "grad_norm": 1.8179521560668945,
232
+ "learning_rate": 3.1000000000000004e-06,
233
+ "loss": 2.2739,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 1.4395604395604396,
238
+ "grad_norm": 1.9612782001495361,
239
+ "learning_rate": 3.2000000000000003e-06,
240
+ "loss": 2.3062,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 1.4835164835164836,
245
+ "grad_norm": 1.7110782861709595,
246
+ "learning_rate": 3.3000000000000006e-06,
247
+ "loss": 2.2654,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 1.5274725274725274,
252
+ "grad_norm": 1.4163310527801514,
253
+ "learning_rate": 3.4000000000000005e-06,
254
+ "loss": 2.3029,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 1.5714285714285714,
259
+ "grad_norm": 1.357823371887207,
260
+ "learning_rate": 3.5e-06,
261
+ "loss": 2.2852,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 1.6153846153846154,
266
+ "grad_norm": 1.281903862953186,
267
+ "learning_rate": 3.6000000000000003e-06,
268
+ "loss": 2.2589,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 1.6593406593406592,
273
+ "grad_norm": 1.156381607055664,
274
+ "learning_rate": 3.7e-06,
275
+ "loss": 2.2403,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 1.7032967032967035,
280
+ "grad_norm": 1.1381186246871948,
281
+ "learning_rate": 3.8000000000000005e-06,
282
+ "loss": 2.2635,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 1.7472527472527473,
287
+ "grad_norm": 1.0350444316864014,
288
+ "learning_rate": 3.900000000000001e-06,
289
+ "loss": 2.2564,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 1.791208791208791,
294
+ "grad_norm": 0.9795923233032227,
295
+ "learning_rate": 4.000000000000001e-06,
296
+ "loss": 2.2672,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 1.8351648351648353,
301
+ "grad_norm": 0.9845089912414551,
302
+ "learning_rate": 4.1e-06,
303
+ "loss": 2.2522,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 1.879120879120879,
308
+ "grad_norm": 0.9356728196144104,
309
+ "learning_rate": 4.2000000000000004e-06,
310
+ "loss": 2.2596,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 1.9230769230769231,
315
+ "grad_norm": 0.9409797787666321,
316
+ "learning_rate": 4.3e-06,
317
+ "loss": 2.2585,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 1.9670329670329672,
322
+ "grad_norm": 0.8999571204185486,
323
+ "learning_rate": 4.4e-06,
324
+ "loss": 2.2821,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 2.0,
329
+ "grad_norm": 0.8957112431526184,
330
+ "learning_rate": 4.5e-06,
331
+ "loss": 2.2528,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 2.043956043956044,
336
+ "grad_norm": 0.9083137512207031,
337
+ "learning_rate": 4.600000000000001e-06,
338
+ "loss": 2.2385,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 2.087912087912088,
343
+ "grad_norm": 0.8808560371398926,
344
+ "learning_rate": 4.7e-06,
345
+ "loss": 2.2904,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 2.131868131868132,
350
+ "grad_norm": 1.0237456560134888,
351
+ "learning_rate": 4.800000000000001e-06,
352
+ "loss": 2.2509,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 2.1758241758241756,
357
+ "grad_norm": 0.9366745948791504,
358
+ "learning_rate": 4.9000000000000005e-06,
359
+ "loss": 2.2487,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 2.21978021978022,
364
+ "grad_norm": 0.9902853965759277,
365
+ "learning_rate": 5e-06,
366
+ "loss": 2.2746,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 2.2637362637362637,
371
+ "grad_norm": 1.0095207691192627,
372
+ "learning_rate": 4.991461232516675e-06,
373
+ "loss": 2.2422,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 2.3076923076923075,
378
+ "grad_norm": 0.8401025533676147,
379
+ "learning_rate": 4.965903258506806e-06,
380
+ "loss": 2.26,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 2.3516483516483517,
385
+ "grad_norm": 0.7961649298667908,
386
+ "learning_rate": 4.923500664848327e-06,
387
+ "loss": 2.2479,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 2.3956043956043955,
392
+ "grad_norm": 0.8089596629142761,
393
+ "learning_rate": 4.864543104251587e-06,
394
+ "loss": 2.2532,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 2.4395604395604398,
399
+ "grad_norm": 0.7256011962890625,
400
+ "learning_rate": 4.789433316637644e-06,
401
+ "loss": 2.2863,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 2.4835164835164836,
406
+ "grad_norm": 0.7093259692192078,
407
+ "learning_rate": 4.698684378016223e-06,
408
+ "loss": 2.2468,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 2.5274725274725274,
413
+ "grad_norm": 0.7478638887405396,
414
+ "learning_rate": 4.592916195656322e-06,
415
+ "loss": 2.2859,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 2.571428571428571,
420
+ "grad_norm": 0.6463800668716431,
421
+ "learning_rate": 4.472851273490985e-06,
422
+ "loss": 2.2686,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 2.6153846153846154,
427
+ "grad_norm": 0.8315393328666687,
428
+ "learning_rate": 4.33930977668283e-06,
429
+ "loss": 2.2441,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 2.659340659340659,
434
+ "grad_norm": 0.693785548210144,
435
+ "learning_rate": 4.1932039290643534e-06,
436
+ "loss": 2.2257,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 2.7032967032967035,
441
+ "grad_norm": 0.7205367684364319,
442
+ "learning_rate": 4.0355317817241705e-06,
443
+ "loss": 2.2502,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 2.7472527472527473,
448
+ "grad_norm": 0.7036604881286621,
449
+ "learning_rate": 3.8673703953060685e-06,
450
+ "loss": 2.2452,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 2.791208791208791,
455
+ "grad_norm": 0.5922514200210571,
456
+ "learning_rate": 3.6898684825926845e-06,
457
+ "loss": 2.2555,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 2.8351648351648353,
462
+ "grad_norm": 0.6727115511894226,
463
+ "learning_rate": 3.5042385616324243e-06,
464
+ "loss": 2.2399,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 2.879120879120879,
469
+ "grad_norm": 0.6253023147583008,
470
+ "learning_rate": 3.3117486730117092e-06,
471
+ "loss": 2.2496,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 2.9230769230769234,
476
+ "grad_norm": 0.6109470129013062,
477
+ "learning_rate": 3.1137137178519983e-06,
478
+ "loss": 2.2501,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 2.967032967032967,
483
+ "grad_norm": 0.5974487066268921,
484
+ "learning_rate": 2.911486475701835e-06,
485
+ "loss": 2.2736,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 3.0,
490
+ "grad_norm": 0.6350704431533813,
491
+ "learning_rate": 2.7064483636808314e-06,
492
+ "loss": 2.2437,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 3.043956043956044,
497
+ "grad_norm": 0.5624422430992126,
498
+ "learning_rate": 2.5e-06,
499
+ "loss": 2.2297,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 3.087912087912088,
504
+ "grad_norm": 0.563450813293457,
505
+ "learning_rate": 2.2935516363191695e-06,
506
+ "loss": 2.2828,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 3.131868131868132,
511
+ "grad_norm": 0.6647318601608276,
512
+ "learning_rate": 2.088513524298165e-06,
513
+ "loss": 2.2435,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 3.1758241758241756,
518
+ "grad_norm": 0.5552098751068115,
519
+ "learning_rate": 1.8862862821480023e-06,
520
+ "loss": 2.242,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 3.21978021978022,
525
+ "grad_norm": 0.5633946061134338,
526
+ "learning_rate": 1.6882513269882916e-06,
527
+ "loss": 2.2683,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 3.2637362637362637,
532
+ "grad_norm": 0.5919342041015625,
533
+ "learning_rate": 1.495761438367577e-06,
534
+ "loss": 2.235,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 3.3076923076923075,
539
+ "grad_norm": 0.5602885484695435,
540
+ "learning_rate": 1.3101315174073162e-06,
541
+ "loss": 2.2535,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 3.3516483516483517,
546
+ "grad_norm": 0.5972963571548462,
547
+ "learning_rate": 1.1326296046939334e-06,
548
+ "loss": 2.2415,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 3.3956043956043955,
553
+ "grad_norm": 0.5750962495803833,
554
+ "learning_rate": 9.644682182758305e-07,
555
+ "loss": 2.247,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 3.4395604395604398,
560
+ "grad_norm": 0.6113232970237732,
561
+ "learning_rate": 8.067960709356479e-07,
562
+ "loss": 2.2803,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 3.4835164835164836,
567
+ "grad_norm": 0.5419983863830566,
568
+ "learning_rate": 6.60690223317171e-07,
569
+ "loss": 2.2412,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 3.5274725274725274,
574
+ "grad_norm": 0.5377610325813293,
575
+ "learning_rate": 5.271487265090163e-07,
576
+ "loss": 2.2807,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 3.571428571428571,
581
+ "grad_norm": 0.5361002683639526,
582
+ "learning_rate": 4.070838043436787e-07,
583
+ "loss": 2.2632,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 3.6153846153846154,
588
+ "grad_norm": 0.6202074289321899,
589
+ "learning_rate": 3.0131562198377763e-07,
590
+ "loss": 2.2389,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 3.659340659340659,
595
+ "grad_norm": 0.631415843963623,
596
+ "learning_rate": 2.1056668336235624e-07,
597
+ "loss": 2.2203,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 3.7032967032967035,
602
+ "grad_norm": 0.598537802696228,
603
+ "learning_rate": 1.3545689574841341e-07,
604
+ "loss": 2.2453,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 3.7472527472527473,
609
+ "grad_norm": 0.5731582045555115,
610
+ "learning_rate": 7.649933515167407e-08,
611
+ "loss": 2.2406,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 3.791208791208791,
616
+ "grad_norm": 0.6371837854385376,
617
+ "learning_rate": 3.4096741493194196e-08,
618
+ "loss": 2.2511,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 3.8351648351648353,
623
+ "grad_norm": 0.6559035181999207,
624
+ "learning_rate": 8.538767483325384e-09,
625
+ "loss": 2.2357,
626
+ "step": 88
627
+ }
628
+ ],
629
+ "logging_steps": 1,
630
+ "max_steps": 88,
631
+ "num_input_tokens_seen": 0,
632
+ "num_train_epochs": 4,
633
+ "save_steps": 11,
634
+ "stateful_callbacks": {
635
+ "TrainerControl": {
636
+ "args": {
637
+ "should_epoch_stop": false,
638
+ "should_evaluate": false,
639
+ "should_log": false,
640
+ "should_save": true,
641
+ "should_training_stop": true
642
+ },
643
+ "attributes": {}
644
+ }
645
+ },
646
+ "total_flos": 2.5419157285835375e+19,
647
+ "train_batch_size": 4,
648
+ "trial_name": null,
649
+ "trial_params": null
650
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af8cef01e0bdc7b5109098ea190cf86b6b007ebdcb6a35c0dc14dbdefc82ca16
3
+ size 8849
zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)