--- license: other license_name: adobe-license license_link: LICENSE datasets: - Major-TOM/Core-S2L2A - Major-TOM/Core-DEM ---

MESA: Text-Driven Terrain Generation Using Latent Diffusion and Global Copernicus Data

Paul Borne--Pons, Mikolaj Czerkawski,Rosalie Martin, Romain Rouffet

CVPR 2025 Workshop MORSE

MESA is a novel generative model based on latent denoising diffusion capable of generating 2.5D representations of terrain based on the text prompt conditioning supplied via natural language. The model produces two co-registered modalities of optical and depth maps. ## Model Description - **Paper:** [MESA: Text-Driven Terrain Generation Using Latent Diffusion and Global Copernicus Data](https://arxiv.org/abs/2504.07210) - **Github:** - **Project page:** - **License:** [Adobe License](https://huggingface.co/NewtNewt) ## Installation ```sh # Clone the repository git clone https://github.com/PaulBorneP/MESA.git cd MESA ``` ## Model Download ```sh huggingface-cli download NewtNewt/MESA --local-dir ./weights ``` ```latex @inproceedings{mesa2025, title={MESA: Text-Driven Terrain Generation Using Latent Diffusion and Global Copernicus Data}, author={Paul Borne--Pons and Mikolaj Czerkawski and Rosalie Martin and Romain Rouffet}, year={2025}, booktitle={MORSE Workshop at CVPR 2025}, eprint={2504.07210}, url={https://arxiv.org/abs/2504.07210},} ``` ## Acknowledgements This implementation builds upon Hugging Face’s [Diffusers](https://github.com/huggingface/diffusers) library. We also acknowledge [Gradio](https://www.gradio.app/) for providing an easy-to-use interface that allowed us to create the inference demos for our models. This model is the product of a collaboration between [Φ-lab, European Space Agency (ESA)](https://philab.esa.int/) and the [Adobe Research (Paris, France)](https://research.adobe.com/careers/paris/).