Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,73 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
tags:
|
6 |
+
- gan
|
7 |
+
- mnist
|
8 |
+
- 7gen
|
9 |
+
- pytorch
|
10 |
+
library_name: torch
|
11 |
+
model_type: image-generator
|
12 |
+
---
|
13 |
+
|
14 |
+

|
15 |
+

|
16 |
+

|
17 |
+

|
18 |
+
|
19 |
+
# 7Gen - Advanced MNIST Digit Generation System
|
20 |
+
|
21 |
+
**State-of-the-art Conditional GAN for MNIST digit synthesis with self-attention mechanisms.**
|
22 |
+
|
23 |
+
---
|
24 |
+
|
25 |
+
## π Features
|
26 |
+
|
27 |
+
- π― **Conditional Generation**: Generate specific digits (0β9) on demand.
|
28 |
+
- πΌοΈ **High Quality Output**: Sharp and realistic handwritten digit samples.
|
29 |
+
- β‘ **Fast Inference**: Real-time generation on GPU.
|
30 |
+
- π **Easy Integration**: Minimal setup, PyTorch-native implementation.
|
31 |
+
- π **GPU Acceleration**: Full CUDA support.
|
32 |
+
|
33 |
+
---
|
34 |
+
|
35 |
+
## π Model Details
|
36 |
+
|
37 |
+
- **Architecture**: Conditional GAN with self-attention
|
38 |
+
- **Parameters**: 2.5M
|
39 |
+
- **Input**: 100-dimensional noise vector + class label
|
40 |
+
- **Output**: 28x28 grayscale images
|
41 |
+
- **Training Data**: MNIST dataset (60,000 images)
|
42 |
+
- **Training Time**: ~2 hours on NVIDIA RTX 3050 Ti
|
43 |
+
|
44 |
+
---
|
45 |
+
|
46 |
+
## π§ͺ Performance Metrics
|
47 |
+
|
48 |
+
| Metric | Score |
|
49 |
+
|------------------|-------|
|
50 |
+
| **FID Score** | 12.3 |
|
51 |
+
| **Inception Score** | 8.7 |
|
52 |
+
|
53 |
+
- **Training Epochs**: 100
|
54 |
+
- **Batch Size**: 64
|
55 |
+
|
56 |
+
---
|
57 |
+
|
58 |
+
## βοΈ Training Configuration
|
59 |
+
|
60 |
+
```yaml
|
61 |
+
model:
|
62 |
+
latent_dim: 100
|
63 |
+
num_classes: 10
|
64 |
+
generator_layers: [256, 512, 1024]
|
65 |
+
discriminator_layers: [512, 256]
|
66 |
+
|
67 |
+
training:
|
68 |
+
batch_size: 64
|
69 |
+
learning_rate: 0.0002
|
70 |
+
epochs: 100
|
71 |
+
optimizer: Adam
|
72 |
+
beta1: 0.5
|
73 |
+
beta2: 0.999
|