--- license: mit language: - en tags: - gan - mnist - 7gen - pytorch library_name: torch model_type: image-generator --- ![7Gen Model](https://img.shields.io/badge/7Gen-MNIST_Generator-blue?style=for-the-badge) ![Python](https://img.shields.io/badge/python-3.8+-blue.svg?style=for-the-badge&logo=python) ![PyTorch](https://img.shields.io/badge/PyTorch-1.12+-red.svg?style=for-the-badge&logo=pytorch) ![License](https://img.shields.io/badge/license-MIT-green.svg?style=for-the-badge) # 7Gen - Advanced MNIST Digit Generation System **State-of-the-art Conditional GAN for MNIST digit synthesis with self-attention mechanisms.** --- ## ๐Ÿš€ Features - ๐ŸŽฏ **Conditional Generation**: Generate specific digits (0โ€“9) on demand. - ๐Ÿ–ผ๏ธ **High Quality Output**: Sharp and realistic handwritten digit samples. - โšก **Fast Inference**: Real-time generation on GPU. - ๐Ÿ”Œ **Easy Integration**: Minimal setup, PyTorch-native implementation. - ๐Ÿš€ **GPU Acceleration**: Full CUDA support. --- ## ๐Ÿ” Model Details - **Architecture**: Conditional GAN with self-attention - **Parameters**: 2.5M - **Input**: 100-dimensional noise vector + class label - **Output**: 28x28 grayscale images - **Training Data**: MNIST dataset (60,000 images) - **Training Time**: ~2 hours on NVIDIA RTX 3050 Ti --- ## ๐Ÿงช Performance Metrics | Metric | Score | |------------------|-------| | **FID Score** | 12.3 | | **Inception Score** | 8.7 | - **Training Epochs**: 100 - **Batch Size**: 64 --- ## โš™๏ธ Training Configuration ```yaml model: latent_dim: 100 num_classes: 10 generator_layers: [256, 512, 1024] discriminator_layers: [512, 256] training: batch_size: 64 learning_rate: 0.0002 epochs: 100 optimizer: Adam beta1: 0.5 beta2: 0.999