# nlp_utils.py (V2 - Adım 2.4 Eklentisi) import spacy from spacy.tokens import Doc, Span # Span eklendi from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F # Cosine Similarity için eklendi from rich.console import Console from typing import List, Tuple # List, Tuple eklendi import os # os.environ['HF_HUB_DISABLE_SYMLINKS_WARNING'] = '1' console = Console() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") console.print(f"Using device: [bold {'green' if device.type == 'cuda' else 'yellow'}]{device}[/bold {'green' if device.type == 'cuda' else 'yellow'}]") if device.type == 'cuda': console.print(f"CUDA Device Name: {torch.cuda.get_device_name(0)}") # --- spaCy --- SPACY_MODEL_NAME = "en_core_web_lg" _nlp = None def load_spacy_model(model_name: str = SPACY_MODEL_NAME) -> spacy.language.Language: global _nlp if _nlp is None: try: console.print(f"Loading spaCy model '{model_name}'...") _nlp = spacy.load(model_name) console.print(f"[green]spaCy model '{model_name}' loaded successfully (on CPU).[/green]") except OSError: console.print(f"[bold red]Error: spaCy model '{model_name}' not found.[/bold red]"); raise return _nlp def process_text_spacy(text: str) -> spacy.tokens.Doc: spacy_nlp = load_spacy_model() if spacy_nlp: return spacy_nlp(text) raise RuntimeError("spaCy model could not be loaded or process failed.") # --- Transformers (BERT) --- BERT_MODEL_NAME = "bert-base-uncased" _tokenizer = None _bert_model = None def load_bert(model_name: str = BERT_MODEL_NAME) -> tuple[AutoTokenizer, AutoModel]: global _tokenizer, _bert_model if _tokenizer is None: try: console.print(f"Loading BERT tokenizer for '{model_name}'...") _tokenizer = AutoTokenizer.from_pretrained(model_name) console.print(f"[green]BERT Tokenizer for '{model_name}' loaded successfully.[/green]") except Exception as e: console.print(f"[bold red]Error loading BERT tokenizer '{model_name}': {e}[/bold red]"); raise if _bert_model is None: try: console.print(f"Loading full BERT model '{model_name}'...") _bert_model = AutoModel.from_pretrained(model_name) _bert_model.to(device); _bert_model.eval() console.print(f"[green]Full BERT Model '{model_name}' loaded successfully to [bold]{device}[/bold].[/green]") except Exception as e: console.print(f"[bold red]Error loading full BERT model '{model_name}': {e}[/bold red]"); raise return _tokenizer, _bert_model def get_bert_embeddings(text: str, max_length: int = 512) -> tuple[torch.Tensor, torch.Tensor]: try: tokenizer, model = load_bert() except Exception as e: raise RuntimeError(f"Failed to load BERT model or tokenizer: {e}") inputs = tokenizer(text, return_tensors="pt", max_length=max_length, padding=True, truncation=True) inputs_on_device = {k: v.to(device) for k, v in inputs.items()} with torch.no_grad(): try: outputs = model(**inputs_on_device) except Exception as e: console.print(f"[bold red]Error during BERT inference: {e}[/bold red]"); raise RuntimeError(f"BERT inference failed: {e}") last_hidden_state = outputs.last_hidden_state; pooler_output = outputs.pooler_output return last_hidden_state.cpu().detach(), pooler_output.cpu().detach() def get_sentence_embedding(sentence_text: str, strategy: str = 'mean', max_length: int = 512) -> torch.Tensor: """ Tek bir cümlenin embedding'ini hesaplar. """ # Not: Bu hala her cümle için ayrı ayrı model çağrısı yapar, verimli değil. # Daha iyisi: Tüm metni bir kerede işleyip, sonra cümle spanlarına göre ortalama almak. # Şimdilik bu basit versiyonla devam edelim. try: last_hidden_state, _ = get_bert_embeddings(sentence_text, max_length) if strategy == 'cls': return last_hidden_state[0, 0, :] elif strategy == 'mean': tokenizer, _ = load_bert() inputs = tokenizer(sentence_text, return_tensors="pt", max_length=max_length, padding=True, truncation=True) attention_mask = inputs['attention_mask'].cpu() input_mask_expanded = attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float() sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) mean_embeddings = sum_embeddings / sum_mask return mean_embeddings[0] else: raise ValueError(f"Unknown strategy: {strategy}") except Exception as e: console.print(f"[yellow]Warning: Failed to get embedding for sentence '{sentence_text[:50]}...': {e}[/yellow]") # Hata durumunda sıfır vektörü döndürelim? Veya None? None daha iyi. return None # --- YENİ FONKSİYON --- def get_all_sentence_embeddings(doc: Doc, strategy: str = 'mean', max_length: int = 512) -> List[torch.Tensor | None]: """ Bir spaCy Doc içerisindeki tüm cümlelerin BERT embedding'lerini hesaplar. (Mevcut haliyle her cümle için ayrı model çağrısı yapar - verimsiz) """ console.print(f" -> Calculating BERT sentence embeddings for {len(list(doc.sents))} sentences (Strategy: {strategy})...", style="dim") embeddings = [] for sent in doc.sents: embedding = get_sentence_embedding(sent.text, strategy=strategy, max_length=max_length) embeddings.append(embedding) console.print(f" -> Sentence embeddings calculation complete.", style="dim") return embeddings