File size: 28,621 Bytes
e1d555c 18f0d97 e1d555c 18f0d97 e1d555c 18f0d97 e1d555c 662549e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
import os
import sys
import numpy as np
import mne
from mne.datasets import eegbci
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report
import tensorflow as tf
from tensorflow.keras import layers, models
import tkinter as tk
from tkinter import filedialog, messagebox, ttk
import matplotlib.pyplot as plt
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk
import seaborn as sns
import threading
import time
import psutil
import datetime
import warnings
# Uyarıları bastır
warnings.filterwarnings("ignore", category=RuntimeWarning)
# Bağımlılık kontrolü
required_libs = ['mne', 'numpy', 'sklearn', 'tensorflow', 'matplotlib', 'seaborn', 'psutil']
for lib in required_libs:
try:
__import__(lib)
except ImportError:
print(f"Hata: {lib} kütüphanesi eksik. Lütfen kurun: pip install {lib}")
sys.exit(1)
# Mixed precision optimizasyonu
tf.keras.mixed_precision.set_global_policy('mixed_float16')
# Veri artırma ve contrastive learning için çiftler
def augment_data(X, noise_factor=0.01):
X_aug = X.copy()
noise = np.random.normal(0, noise_factor, X.shape)
X_aug += noise
return X_aug
def create_contrastive_pairs(X):
X_pos = augment_data(X)
X_neg = np.roll(X, shift=1, axis=0)
return X_pos, X_neg
# EggZayn v9.4 Modeli
class EggZaynModel:
def __init__(self):
self.model = None
self.class_names = ['Left Fist', 'Right Fist', 'Both Fists', 'Both Feet']
self.history = None
def prepare_eegmmidb_data(self, epoch_duration=1.0, target_sfreq=160):
"""EEGMMIDB verisini hatasız ve boyut uyumlu şekilde işler."""
data_dir = './eeg_data'
subjects = range(1, 110)
runs = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
print("EggZayn: EEGMMIDB verisi hazırlanıyor...")
os.makedirs(data_dir, exist_ok=True)
total_files = len(subjects) * len(runs)
processed_files = 0
raw_list = []
motor_channels = ['Fc3', 'Fc4', 'C3', 'C4', 'Cz', 'Cp3', 'Cp4']
for subject in subjects:
for run in runs:
file_path = f"{data_dir}/S{subject:03d}/S{subject:03d}R{run:02d}.edf"
if not os.path.exists(file_path):
continue
try:
raw = mne.io.read_raw_edf(file_path, preload=True, verbose=False)
raw.resample(target_sfreq, npad='auto', verbose=False)
raw.notch_filter(60, verbose=False)
raw.filter(8, 30, fir_design='firwin', verbose=False)
available_channels = [ch for ch in raw.ch_names if any(mc.upper() in ch.upper() for mc in motor_channels)]
if len(available_channels) < 1:
raise ValueError(f"Denek {subject}, Run {run}: Hiç motor kanal bulunamadı.")
raw.pick(available_channels)
if len(available_channels) < 7:
raw.set_montage('standard_1020')
missing_channels = [ch for ch in motor_channels if ch not in available_channels]
raw.interpolate_bads(reset_bads=True, mode='accurate', exclude=missing_channels)
raw.pick(motor_channels)
events = mne.make_fixed_length_events(raw, duration=epoch_duration)
labels = self.assign_labels(run, len(events))
raw_list.append((raw, events, labels))
processed_files += 1
print(f"İlerleme: {processed_files}/{total_files}")
except Exception as e:
print(f"Hata: Denek {subject}, Run {run} işlenemedi: {e}")
continue
if not raw_list:
raise ValueError("EggZayn: Hiçbir veri işlenemedi, veri setinde ciddi bir sorun var.")
X_all, Y_all = [], []
expected_samples = int(target_sfreq * epoch_duration) # 160 Hz * 1 sn = 160 örnek
for raw, events, labels in raw_list:
epochs = mne.Epochs(raw, events, tmin=0, tmax=epoch_duration, baseline=None, preload=True, verbose=False)
X = epochs.get_data(picks='eeg')
if X.shape[2] != expected_samples:
X_resampled = np.zeros((X.shape[0], X.shape[1], expected_samples))
for i in range(X.shape[0]):
for j in range(X.shape[1]):
X_resampled[i, j, :] = np.interp(
np.linspace(0, 1, expected_samples),
np.linspace(0, 1, X.shape[2]),
X[i, j, :]
)
X = X_resampled
X = (X - X.min(axis=2, keepdims=True)) / (X.max(axis=2, keepdims=True) - X.min(axis=2, keepdims=True))
# Veri ve etiket eşitleme
if X.shape[0] != len(labels):
min_len = min(X.shape[0], len(labels))
X = X[:min_len]
labels = labels[:min_len]
print(f"Uyarı: Veri ve etiket eşitlemesi yapıldı. Yeni boyut: {min_len}")
X_all.append(X)
Y_all.append(labels)
X = np.concatenate(X_all, axis=0)
Y = np.concatenate(Y_all, axis=0)
# Son eşitleme kontrolü
if X.shape[0] != len(Y):
min_len = min(X.shape[0], len(Y))
X = X[:min_len]
Y = Y[:min_len]
print(f"Uyarı: Son eşitleme yapıldı. Yeni boyut: {min_len}")
unique, counts = np.unique(Y, return_counts=True)
print(f"EggZayn: Sınıf dağılımı: {dict(zip(unique, counts))}")
X_train, X_temp, Y_train, Y_temp = train_test_split(X, Y, test_size=0.3, random_state=42, stratify=Y)
X_val, X_test, Y_val, Y_test = train_test_split(X_temp, Y_temp, test_size=0.5, random_state=42, stratify=Y_temp)
np.save('X_train.npy', X_train)
np.save('Y_train.npy', Y_train)
np.save('X_val.npy', X_val)
np.save('Y_val.npy', Y_val)
np.save('X_test.npy', X_test)
np.save('Y_test.npy', Y_test)
print(f"EggZayn: Veri hazır: {X.shape[0]} örnek, Şekil: {X.shape}")
return X_train, Y_train, X_val, Y_val, X_test, Y_test
def assign_labels(self, run, num_events):
"""Optimize edilmiş etiket atama."""
label_map = {
(1, 2): 0, # Baseline
(3, 5, 7): [0, 1], # Sol/Sağ yumruk
(4, 6, 8): [0, 1], # Sol/Sağ imagery
(9, 11, 13): [2, 3], # Her iki yumruk/ayak
(10, 12, 14): [2, 3] # Her iki yumruk/ayak imagery
}
for runs, labels in label_map.items():
if run in runs:
if isinstance(labels, int):
return np.full(num_events, labels, dtype=int)
return np.array([labels[i % 2] for i in range(num_events)])
raise ValueError(f"Geçersiz run numarası: {run}")
def process_signal(self, signal_data, epoch_duration=1.0, target_sfreq=160):
"""Anlık sinyal veya dosya girişini hatasız ve ultra gelişmiş yöntemlerle işler."""
if isinstance(signal_data, str):
raw = mne.io.read_raw(signal_data, preload=True, verbose=False)
else:
if not isinstance(signal_data, np.ndarray):
raise ValueError("EggZayn: Anlık sinyal numpy array olmalı.")
info = mne.create_info(ch_names=['Fc3', 'Fc4', 'C3', 'C4', 'Cz', 'Cp3', 'Cp4'], sfreq=target_sfreq, ch_types='eeg')
raw = mne.io.RawArray(signal_data, info)
if raw.info['sfreq'] != target_sfreq:
raw.resample(target_sfreq, npad='auto', verbose=False)
raw.notch_filter(60, verbose=False)
raw.filter(8, 30, fir_design='firwin', verbose=False)
available_channels = [ch for ch in raw.ch_names if ch.upper() in ['FC3', 'FC4', 'C3', 'C4', 'CZ', 'CP3', 'CP4']]
if len(available_channels) < 1:
raise ValueError("EggZayn: Hiç motor kanal bulunamadı.")
raw.pick(available_channels)
if len(available_channels) < 7:
raw.set_montage('standard_1020')
missing_channels = [ch for ch in ['Fc3', 'Fc4', 'C3', 'C4', 'Cz', 'Cp3', 'Cp4'] if ch not in available_channels]
raw.interpolate_bads(reset_bads=True, mode='accurate', exclude=missing_channels)
raw.pick(['Fc3', 'Fc4', 'C3', 'C4', 'Cz', 'Cp3', 'Cp4'])
events = mne.make_fixed_length_events(raw, duration=epoch_duration)
epochs = mne.Epochs(raw, events, tmin=0, tmax=epoch_duration, baseline=None, preload=True, verbose=False)
X = epochs.get_data(picks='eeg')
expected_samples = int(target_sfreq * epoch_duration)
if X.shape[2] != expected_samples:
X_resampled = np.zeros((X.shape[0], X.shape[1], expected_samples))
for i in range(X.shape[0]):
for j in range(X.shape[1]):
X_resampled[i, j, :] = np.interp(
np.linspace(0, 1, expected_samples),
np.linspace(0, 1, X.shape[2]),
X[i, j, :]
)
X = X_resampled
X = (X - X.min(axis=2, keepdims=True)) / (X.max(axis=2, keepdims=True) - X.min(axis=2, keepdims=True))
return X
def build_transformer_block(self, x, num_heads=4, key_dim=32, ff_dim=64):
attn_output = layers.MultiHeadAttention(num_heads=num_heads, key_dim=key_dim)(x, x)
x = layers.Add()([x, attn_output])
x = layers.LayerNormalization(epsilon=1e-6)(x)
ffn = layers.Dense(ff_dim, activation='gelu')(x)
ffn = layers.Dense(x.shape[-1])(ffn)
x = layers.Add()([x, ffn])
x = layers.LayerNormalization(epsilon=1e-6)(x)
return x
def build_encoder(self, input_shape):
"""Geliştirilmiş encoder for contrastive learning."""
inputs = layers.Input(shape=input_shape)
x = layers.Dense(32, activation='gelu')(inputs)
x = layers.Dropout(0.05)(x)
for _ in range(4):
x = self.build_transformer_block(x)
x = layers.GlobalAveragePooling1D()(x)
x = layers.Dense(128, activation='gelu')(x)
outputs = layers.Dense(64)(x)
return models.Model(inputs, outputs)
def contrastive_loss(self, labels, z1, z2, margin=1.0):
"""Kendi contrastive loss fonksiyonumuz."""
# Türleri float32'ye çevir
labels = tf.cast(labels, tf.float32)
z1 = tf.cast(z1, tf.float32)
z2 = tf.cast(z2, tf.float32)
margin = tf.cast(margin, tf.float32)
# Mesafeleri hesapla
squared_distance = tf.reduce_sum(tf.square(z1 - z2), axis=-1)
distance = tf.sqrt(squared_distance + tf.keras.backend.epsilon())
# Pozitif ve negatif çiftler için kayıp
positive_loss = labels * squared_distance
negative_loss = (1 - labels) * tf.square(tf.maximum(margin - distance, 0))
loss = 0.5 * (positive_loss + negative_loss)
return tf.reduce_mean(loss)
def pretrain(self, X_train, epochs=3):
"""Contrastive learning ile pretraining."""
encoder = self.build_encoder(X_train.shape[1:])
X_pos, X_neg = create_contrastive_pairs(X_train)
inputs1 = layers.Input(shape=X_train.shape[1:])
inputs2 = layers.Input(shape=X_train.shape[1:])
z1 = encoder(inputs1)
z2 = encoder(inputs2)
model = models.Model([inputs1, inputs2], [z1, z2])
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
# Kendi loss fonksiyonumuzu kullanarak modeli derle
@tf.function
def train_step(X1, X2, labels):
with tf.GradientTape() as tape:
z1, z2 = model([X1, X2], training=True)
loss = self.contrastive_loss(labels, z1, z2)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
return loss
# Eğitim döngüsü
batch_size = 128
for epoch in range(epochs):
print(f"Epoch {epoch+1}/{epochs}")
for i in range(0, len(X_pos), batch_size):
X1_batch = X_pos[i:i+batch_size]
X2_batch = X_neg[i:i+batch_size]
labels_batch = np.ones(len(X1_batch))
loss = train_step(X1_batch, X2_batch, labels_batch)
print(f"Batch {i//batch_size+1}: Loss = {loss.numpy():.4f}")
return encoder
def train(self, X_train, Y_train, X_val, Y_val, save_path='EggZayn_final.h9_4'):
"""Ultra gelişmiş ve hatasız eğitim."""
encoder = self.pretrain(X_train)
inputs = layers.Input(shape=X_train.shape[1:])
x = encoder(inputs)
x = layers.Dense(256, activation='gelu')(x)
x = layers.Dropout(0.05)(x)
outputs = layers.Dense(4, activation='softmax', dtype='float32')(x)
self.model = models.Model(inputs, outputs)
optimizer = tf.keras.optimizers.Adam(learning_rate=2e-4)
self.model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy'])
callbacks = [
tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=2, restore_best_weights=True),
tf.keras.callbacks.ModelCheckpoint(save_path, save_best_only=True, monitor='val_accuracy', mode='max'),
tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=1, min_lr=1e-6)
]
self.history = self.model.fit(X_train, Y_train, epochs=10, batch_size=128,
validation_data=(X_val, Y_val), callbacks=callbacks, verbose=1)
converter = tf.lite.TFLiteConverter.from_keras_model(self.model)
tflite_model = converter.convert()
with open(save_path.replace('.h9_4', '.tflite'), 'wb') as f:
f.write(tflite_model)
print(f"EggZayn: Model {save_path} ve {save_path.replace('.h9_4', '.tflite')} olarak kaydedildi.")
return self.history
def evaluate(self, X_test, Y_test):
if self.model is None:
raise ValueError("EggZayn: Model eğitilmedi veya yüklenmedi.")
loss, accuracy = self.model.evaluate(X_test, Y_test, verbose=0)
Y_pred = np.argmax(self.model.predict(X_test, verbose=0), axis=1)
report = classification_report(Y_test, Y_pred, target_names=self.class_names)
cm = confusion_matrix(Y_test, Y_pred)
return loss, accuracy, report, cm
def predict(self, signal_input):
"""Prompt tabanlı, ultra gelişmiş tahmin ve raporlama."""
if self.model is None:
if os.path.exists('EggZayn_final.h9_4'):
self.model = tf.keras.models.load_model('EggZayn_final.h9_4')
else:
raise ValueError("EggZayn: Model bulunamadı.")
start_time = time.time()
X_processed = self.process_signal(signal_input)
predictions = self.model.predict(X_processed, verbose=0)
predicted_classes = np.argmax(predictions, axis=1)
probabilities = [max(prob) for prob in predictions]
analysis_time = time.time() - start_time
results = [(self.class_names[pred], prob) for pred, prob in zip(predicted_classes, probabilities)]
# Profesyonel raporlama
report = f"Analiz Raporu - {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n"
report += f"Toplam Örnek: {len(results)}\n"
report += f"Analiz Süresi: {analysis_time:.3f} saniye\n"
report += "Sonuçlar:\n"
for i, (label, prob) in enumerate(results):
report += f"Örnek {i+1}: {label} (Güven: {prob*100:.2f}%)\n"
return results, report
def load_model(self, model_path='EggZayn_final.h9_4'):
self.model = tf.keras.models.load_model(model_path)
print(f"EggZayn: Model {model_path} yüklendi.")
# GUI: EggZaynGUI
class EggZaynGUI:
def __init__(self, root):
self.root = root
self.root.title("EggZayn v9.4")
self.root.geometry("1200x900")
self.root.configure(bg='#1A2526')
self.model = EggZaynModel()
self.X_train, self.Y_train = None, None
self.X_val, self.Y_val = None, None
self.X_test, self.Y_test = None, None
self.create_widgets()
def create_widgets(self):
style = ttk.Style()
style.configure('TButton', font=('Arial', 14, 'bold'), background='#00A8E8', foreground='white')
style.configure('TLabel', font=('Arial', 12), background='#1A2526', foreground='#ECF0F1')
top_frame = ttk.Frame(self.root)
top_frame.pack(pady=20)
ttk.Button(top_frame, text="EggZayn'ı Eğit (EEGMMIDB)", command=self.run_full_process_thread).pack(side=tk.LEFT, padx=10)
ttk.Button(top_frame, text="Kendi Veri Setimle Eğit", command=self.run_custom_train_thread).pack(side=tk.LEFT, padx=10)
ttk.Button(top_frame, text="Sinyal Analiz Et", command=self.predict_new_data).pack(side=tk.LEFT, padx=10)
self.status_label = ttk.Label(self.root, text="Durum: Hazır")
self.status_label.pack(pady=10)
self.progress = ttk.Progressbar(self.root, length=500, mode='determinate')
self.progress.pack(pady=10)
self.result_frame = ttk.Frame(self.root)
self.result_frame.pack(pady=10, fill=tk.BOTH, expand=True)
self.result_text = tk.Text(self.result_frame, height=15, width=100, bg='#ECF0F1', fg='#2C3E50', font=('Arial', 11))
self.result_text.pack(pady=5, padx=5)
self.fig, (self.ax1, self.ax2) = plt.subplots(1, 2, figsize=(12, 5), dpi=100)
self.fig.patch.set_facecolor('#1A2526')
self.canvas = FigureCanvasTkAgg(self.fig, master=self.root)
self.canvas.get_tk_widget().pack(pady=10)
self.toolbar = NavigationToolbar2Tk(self.canvas, self.root)
self.toolbar.update()
self.toolbar.pack()
def full_process(self):
self.status_label.config(text="EggZayn: Veri hazırlama aşaması...")
self.progress['value'] = 0
self.root.update()
self.result_text.delete(1.0, tk.END)
self.result_text.insert(tk.END, "EggZayn: EEGMMIDB hazırlanıyor...\n")
self.root.update()
start_time = time.time()
try:
X_train, Y_train, X_val, Y_val, X_test, Y_test = self.model.prepare_eegmmidb_data()
self.X_train, self.Y_train = X_train, Y_train
self.X_val, self.Y_val = X_val, Y_val
self.X_test, self.Y_test = X_test, Y_test
self.progress['value'] = 33
self.result_text.insert(tk.END, f"EggZayn: Veri hazır! Süre: {time.time() - start_time:.2f} saniye\n")
except Exception as e:
self.result_text.insert(tk.END, f"Hata: Veri hazırlama başarısız: {e}\n")
messagebox.showerror("Hata", f"EggZayn: Veri hazırlama başarısız: {e}")
return
self.status_label.config(text="EggZayn: Model eğitim aşaması...")
self.result_text.insert(tk.END, "EggZayn: Model eğitiliyor...\n")
self.root.update()
start_time = time.time()
try:
self.model.train(self.X_train, self.Y_train, self.X_val, self.Y_val)
self.progress['value'] = 66
self.result_text.insert(tk.END, f"EggZayn: Eğitim tamamlandı! Süre: {time.time() - start_time:.2f} saniye\n")
self.update_training_plot()
except Exception as e:
self.result_text.insert(tk.END, f"Hata: Eğitim başarısız: {e}\n")
messagebox.showerror("Hata", f"EggZayn: Eğitim başarısız: {e}")
return
self.status_label.config(text="EggZayn: Değerlendirme aşaması...")
self.result_text.insert(tk.END, "EggZayn: Model değerlendiriliyor...\n")
self.root.update()
start_time = time.time()
try:
loss, accuracy, report, cm = self.model.evaluate(self.X_test, self.Y_test)
self.progress['value'] = 100
self.result_text.insert(tk.END, f"EggZayn: Değerlendirme tamamlandı! Süre: {time.time() - start_time:.2f} saniye\n")
self.result_text.insert(tk.END, f"\nTest Loss: {loss:.4f}\nTest Accuracy: {accuracy:.4f}\n\nClassification Report:\n{report}\n")
self.ax2.clear()
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=self.model.class_names, yticklabels=self.model.class_names, ax=self.ax2)
self.ax2.set_title('EggZayn Confusion Matrix', color='white')
self.ax2.set_xlabel('Predicted', color='white')
self.ax2.set_ylabel('True', color='white')
self.ax2.tick_params(colors='white')
self.canvas.draw()
self.status_label.config(text="EggZayn: Model hazır!")
except Exception as e:
self.result_text.insert(tk.END, f"Hata: Değerlendirme başarısız: {e}\n")
messagebox.showerror("Hata", f"EggZayn: Değerlendirme başarısız: {e}")
def custom_train(self):
file_path = filedialog.askopenfilename(title="EEG Veri Dosyasını Seç (EDF veya NumPy)",
filetypes=[("EDF files", "*.edf"), ("NumPy files", "*.npy")])
if not file_path:
return
self.status_label.config(text="EggZayn: Kendi veri seti hazırlanıyor...")
self.progress['value'] = 0
self.root.update()
self.result_text.delete(1.0, tk.END)
self.result_text.insert(tk.END, "EggZayn: Kendi veri seti hazırlanıyor...\n")
self.root.update()
start_time = time.time()
try:
if file_path.endswith('.npy'):
data = np.load(file_path, allow_pickle=True)
if 'X' not in data or 'Y' not in data:
raise ValueError("EggZayn: .npy dosyasında 'X' ve 'Y' anahtarları olmalı.")
X_temp, Y_temp = data['X'], data['Y']
X_train, X_temp, Y_train, Y_temp = train_test_split(X_temp, Y_temp, test_size=0.3, random_state=42, stratify=Y_temp)
X_val, X_test, Y_val, Y_test = train_test_split(X_temp, Y_temp, test_size=0.5, random_state=42, stratify=Y_temp)
else:
X_train, Y_train, X_val, Y_val, X_test, Y_test = self.model.prepare_custom_data(file_path)
self.X_train, self.Y_train = X_train, Y_train
self.X_val, self.Y_val = X_val, Y_val
self.X_test, self.Y_test = X_test, Y_test
self.progress['value'] = 33
self.result_text.insert(tk.END, f"EggZayn: Kendi veri hazır! Süre: {time.time() - start_time:.2f} saniye\n")
except Exception as e:
self.result_text.insert(tk.END, f"Hata: Kendi veri hazırlama başarısız: {e}\n")
messagebox.showerror("Hata", f"EggZayn: Kendi veri hazırlama başarısız: {e}")
return
self.status_label.config(text="EggZayn: Model eğitim aşaması...")
self.result_text.insert(tk.END, "EggZayn: Model eğitiliyor...\n")
self.root.update()
start_time = time.time()
try:
self.model.train(self.X_train, self.Y_train, self.X_val, self.Y_val)
self.progress['value'] = 66
self.result_text.insert(tk.END, f"EggZayn: Eğitim tamamlandı! Süre: {time.time() - start_time:.2f} saniye\n")
self.update_training_plot()
except Exception as e:
self.result_text.insert(tk.END, f"Hata: Eğitim başarısız: {e}\n")
messagebox.showerror("Hata", f"EggZayn: Eğitim başarısız: {e}")
return
self.status_label.config(text="EggZayn: Değerlendirme aşaması...")
self.result_text.insert(tk.END, "EggZayn: Model değerlendiriliyor...\n")
self.root.update()
start_time = time.time()
try:
loss, accuracy, report, cm = self.model.evaluate(self.X_test, self.Y_test)
self.progress['value'] = 100
self.result_text.insert(tk.END, f"EggZayn: Değerlendirme tamamlandı! Süre: {time.time() - start_time:.2f} saniye\n")
self.result_text.insert(tk.END, f"\nTest Loss: {loss:.4f}\nTest Accuracy: {accuracy:.4f}\n\nClassification Report:\n{report}\n")
self.ax2.clear()
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=self.model.class_names, yticklabels=self.model.class_names, ax=self.ax2)
self.ax2.set_title('EggZayn Confusion Matrix', color='white')
self.ax2.set_xlabel('Predicted', color='white')
self.ax2.set_ylabel('True', color='white')
self.ax2.tick_params(colors='white')
self.canvas.draw()
self.status_label.config(text="EggZayn: Model hazır")
except Exception as e:
self.result_text.insert(tk.END, f"Hata: Değerlendirme başarısız: {e}\n")
messagebox.showerror("Hata", f"EggZayn: Değerlendirme başarısız: {e}")
def update_training_plot(self):
if self.model.history:
self.ax1.clear()
self.ax1.plot(self.model.history.history['accuracy'], label='Training Accuracy', color='cyan')
self.ax1.plot(self.model.history.history['val_accuracy'], label='Validation Accuracy', color='orange')
self.ax1.plot(self.model.history.history['loss'], label='Training Loss', color='red')
self.ax1.plot(self.model.history.history['val_loss'], label='Validation Loss', color='purple')
self.ax1.set_title('EggZayn Training Metrics', color='white')
self.ax1.set_xlabel('Epoch', color='white')
self.ax1.set_ylabel('Value', color='white')
self.ax1.legend(facecolor='#1A2526', edgecolor='white', loc='best', labelcolor='white')
self.ax1.tick_params(colors='white')
self.ax1.set_facecolor('#ECF0F1')
self.canvas.draw()
def predict_new_data(self):
file_path = filedialog.askopenfilename(title="EEG Sinyal Dosyasını Seç (EDF veya NumPy)",
filetypes=[("EDF files", "*.edf"), ("NumPy files", "*.npy")])
if not file_path:
return
self.status_label.config(text="EggZayn: Sinyal analiz ediliyor...")
self.progress['value'] = 0
self.root.update()
self.result_text.delete(1.0, tk.END)
self.result_text.insert(tk.END, "EggZayn: Sinyal analiz ediliyor...\n")
self.root.update()
try:
predictions, report = self.model.predict(file_path)
self.progress['value'] = 100
self.result_text.insert(tk.END, report)
pred_probs = np.array([prob for _, prob in predictions])
self.ax1.clear()
self.ax1.bar(self.model.class_names, pred_probs.mean(axis=0), color='skyblue', edgecolor='black')
self.ax1.set_title('EggZayn Ortalama Tahmin Olasılıkları', color='white')
self.ax1.set_ylabel('Olasılık', color='white')
self.ax1.set_ylim(0, 1)
self.ax1.tick_params(colors='white')
self.ax1.set_facecolor('#ECF0F1')
self.ax2.clear()
self.canvas.draw()
self.status_label.config(text="EggZayn: Analiz tamamlandı!")
except Exception as e:
self.result_text.insert(tk.END, f"Hata: Sinyal analizi başarısız: {e}\n")
messagebox.showerror("Hata", f"EggZayn: Sinyal analizi başarısız: {e}")
def run_full_process_thread(self):
threading.Thread(target=self.full_process, daemon=True).start()
def run_custom_train_thread(self):
threading.Thread(target=self.custom_train, daemon=True).start()
if __name__ == '__main__':
root = tk.Tk()
app = EggZaynGUI(root)
root.mainloop() |