File size: 28,621 Bytes
e1d555c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18f0d97
e1d555c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18f0d97
e1d555c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18f0d97
e1d555c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
662549e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
import os
import sys
import numpy as np
import mne
from mne.datasets import eegbci
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report
import tensorflow as tf
from tensorflow.keras import layers, models
import tkinter as tk
from tkinter import filedialog, messagebox, ttk
import matplotlib.pyplot as plt
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk
import seaborn as sns
import threading
import time
import psutil
import datetime
import warnings

# Uyarıları bastır
warnings.filterwarnings("ignore", category=RuntimeWarning)

# Bağımlılık kontrolü
required_libs = ['mne', 'numpy', 'sklearn', 'tensorflow', 'matplotlib', 'seaborn', 'psutil']
for lib in required_libs:
    try:
        __import__(lib)
    except ImportError:
        print(f"Hata: {lib} kütüphanesi eksik. Lütfen kurun: pip install {lib}")
        sys.exit(1)

# Mixed precision optimizasyonu
tf.keras.mixed_precision.set_global_policy('mixed_float16')

# Veri artırma ve contrastive learning için çiftler
def augment_data(X, noise_factor=0.01):
    X_aug = X.copy()
    noise = np.random.normal(0, noise_factor, X.shape)
    X_aug += noise
    return X_aug

def create_contrastive_pairs(X):
    X_pos = augment_data(X)
    X_neg = np.roll(X, shift=1, axis=0)
    return X_pos, X_neg

# EggZayn v9.4 Modeli
class EggZaynModel:
    def __init__(self):
        self.model = None
        self.class_names = ['Left Fist', 'Right Fist', 'Both Fists', 'Both Feet']
        self.history = None

    def prepare_eegmmidb_data(self, epoch_duration=1.0, target_sfreq=160):
        """EEGMMIDB verisini hatasız ve boyut uyumlu şekilde işler."""
        data_dir = './eeg_data'
        subjects = range(1, 110)
        runs = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
        
        print("EggZayn: EEGMMIDB verisi hazırlanıyor...")
        os.makedirs(data_dir, exist_ok=True)
        total_files = len(subjects) * len(runs)
        processed_files = 0
        
        raw_list = []
        motor_channels = ['Fc3', 'Fc4', 'C3', 'C4', 'Cz', 'Cp3', 'Cp4']
        for subject in subjects:
            for run in runs:
                file_path = f"{data_dir}/S{subject:03d}/S{subject:03d}R{run:02d}.edf"
                if not os.path.exists(file_path):
                    continue
                
                try:
                    raw = mne.io.read_raw_edf(file_path, preload=True, verbose=False)
                    raw.resample(target_sfreq, npad='auto', verbose=False)
                    
                    raw.notch_filter(60, verbose=False)
                    raw.filter(8, 30, fir_design='firwin', verbose=False)
                    
                    available_channels = [ch for ch in raw.ch_names if any(mc.upper() in ch.upper() for mc in motor_channels)]
                    if len(available_channels) < 1:
                        raise ValueError(f"Denek {subject}, Run {run}: Hiç motor kanal bulunamadı.")
                    
                    raw.pick(available_channels)
                    if len(available_channels) < 7:
                        raw.set_montage('standard_1020')
                        missing_channels = [ch for ch in motor_channels if ch not in available_channels]
                        raw.interpolate_bads(reset_bads=True, mode='accurate', exclude=missing_channels)
                        raw.pick(motor_channels)
                    
                    events = mne.make_fixed_length_events(raw, duration=epoch_duration)
                    labels = self.assign_labels(run, len(events))
                    raw_list.append((raw, events, labels))
                    processed_files += 1
                    print(f"İlerleme: {processed_files}/{total_files}")
                except Exception as e:
                    print(f"Hata: Denek {subject}, Run {run} işlenemedi: {e}")
                    continue
        
        if not raw_list:
            raise ValueError("EggZayn: Hiçbir veri işlenemedi, veri setinde ciddi bir sorun var.")
        
        X_all, Y_all = [], []
        expected_samples = int(target_sfreq * epoch_duration)  # 160 Hz * 1 sn = 160 örnek
        for raw, events, labels in raw_list:
            epochs = mne.Epochs(raw, events, tmin=0, tmax=epoch_duration, baseline=None, preload=True, verbose=False)
            X = epochs.get_data(picks='eeg')
            if X.shape[2] != expected_samples:
                X_resampled = np.zeros((X.shape[0], X.shape[1], expected_samples))
                for i in range(X.shape[0]):
                    for j in range(X.shape[1]):
                        X_resampled[i, j, :] = np.interp(
                            np.linspace(0, 1, expected_samples),
                            np.linspace(0, 1, X.shape[2]),
                            X[i, j, :]
                        )
                X = X_resampled
            X = (X - X.min(axis=2, keepdims=True)) / (X.max(axis=2, keepdims=True) - X.min(axis=2, keepdims=True))
            
            # Veri ve etiket eşitleme
            if X.shape[0] != len(labels):
                min_len = min(X.shape[0], len(labels))
                X = X[:min_len]
                labels = labels[:min_len]
                print(f"Uyarı: Veri ve etiket eşitlemesi yapıldı. Yeni boyut: {min_len}")
            
            X_all.append(X)
            Y_all.append(labels)
        
        X = np.concatenate(X_all, axis=0)
        Y = np.concatenate(Y_all, axis=0)
        
        # Son eşitleme kontrolü
        if X.shape[0] != len(Y):
            min_len = min(X.shape[0], len(Y))
            X = X[:min_len]
            Y = Y[:min_len]
            print(f"Uyarı: Son eşitleme yapıldı. Yeni boyut: {min_len}")
        
        unique, counts = np.unique(Y, return_counts=True)
        print(f"EggZayn: Sınıf dağılımı: {dict(zip(unique, counts))}")
        
        X_train, X_temp, Y_train, Y_temp = train_test_split(X, Y, test_size=0.3, random_state=42, stratify=Y)
        X_val, X_test, Y_val, Y_test = train_test_split(X_temp, Y_temp, test_size=0.5, random_state=42, stratify=Y_temp)
        
        np.save('X_train.npy', X_train)
        np.save('Y_train.npy', Y_train)
        np.save('X_val.npy', X_val)
        np.save('Y_val.npy', Y_val)
        np.save('X_test.npy', X_test)
        np.save('Y_test.npy', Y_test)
        
        print(f"EggZayn: Veri hazır: {X.shape[0]} örnek, Şekil: {X.shape}")
        return X_train, Y_train, X_val, Y_val, X_test, Y_test

    def assign_labels(self, run, num_events):
        """Optimize edilmiş etiket atama."""
        label_map = {
            (1, 2): 0,  # Baseline
            (3, 5, 7): [0, 1],  # Sol/Sağ yumruk
            (4, 6, 8): [0, 1],  # Sol/Sağ imagery
            (9, 11, 13): [2, 3],  # Her iki yumruk/ayak
            (10, 12, 14): [2, 3]  # Her iki yumruk/ayak imagery
        }
        for runs, labels in label_map.items():
            if run in runs:
                if isinstance(labels, int):
                    return np.full(num_events, labels, dtype=int)
                return np.array([labels[i % 2] for i in range(num_events)])
        raise ValueError(f"Geçersiz run numarası: {run}")

    def process_signal(self, signal_data, epoch_duration=1.0, target_sfreq=160):
        """Anlık sinyal veya dosya girişini hatasız ve ultra gelişmiş yöntemlerle işler."""
        if isinstance(signal_data, str):
            raw = mne.io.read_raw(signal_data, preload=True, verbose=False)
        else:
            if not isinstance(signal_data, np.ndarray):
                raise ValueError("EggZayn: Anlık sinyal numpy array olmalı.")
            info = mne.create_info(ch_names=['Fc3', 'Fc4', 'C3', 'C4', 'Cz', 'Cp3', 'Cp4'], sfreq=target_sfreq, ch_types='eeg')
            raw = mne.io.RawArray(signal_data, info)
        
        if raw.info['sfreq'] != target_sfreq:
            raw.resample(target_sfreq, npad='auto', verbose=False)
        
        raw.notch_filter(60, verbose=False)
        raw.filter(8, 30, fir_design='firwin', verbose=False)
        
        available_channels = [ch for ch in raw.ch_names if ch.upper() in ['FC3', 'FC4', 'C3', 'C4', 'CZ', 'CP3', 'CP4']]
        if len(available_channels) < 1:
            raise ValueError("EggZayn: Hiç motor kanal bulunamadı.")
        
        raw.pick(available_channels)
        if len(available_channels) < 7:
            raw.set_montage('standard_1020')
            missing_channels = [ch for ch in ['Fc3', 'Fc4', 'C3', 'C4', 'Cz', 'Cp3', 'Cp4'] if ch not in available_channels]
            raw.interpolate_bads(reset_bads=True, mode='accurate', exclude=missing_channels)
            raw.pick(['Fc3', 'Fc4', 'C3', 'C4', 'Cz', 'Cp3', 'Cp4'])
        
        events = mne.make_fixed_length_events(raw, duration=epoch_duration)
        epochs = mne.Epochs(raw, events, tmin=0, tmax=epoch_duration, baseline=None, preload=True, verbose=False)
        X = epochs.get_data(picks='eeg')
        expected_samples = int(target_sfreq * epoch_duration)
        if X.shape[2] != expected_samples:
            X_resampled = np.zeros((X.shape[0], X.shape[1], expected_samples))
            for i in range(X.shape[0]):
                for j in range(X.shape[1]):
                    X_resampled[i, j, :] = np.interp(
                        np.linspace(0, 1, expected_samples),
                        np.linspace(0, 1, X.shape[2]),
                        X[i, j, :]
                    )
            X = X_resampled
        X = (X - X.min(axis=2, keepdims=True)) / (X.max(axis=2, keepdims=True) - X.min(axis=2, keepdims=True))
        return X

    def build_transformer_block(self, x, num_heads=4, key_dim=32, ff_dim=64):
        attn_output = layers.MultiHeadAttention(num_heads=num_heads, key_dim=key_dim)(x, x)
        x = layers.Add()([x, attn_output])
        x = layers.LayerNormalization(epsilon=1e-6)(x)
        ffn = layers.Dense(ff_dim, activation='gelu')(x)
        ffn = layers.Dense(x.shape[-1])(ffn)
        x = layers.Add()([x, ffn])
        x = layers.LayerNormalization(epsilon=1e-6)(x)
        return x

    def build_encoder(self, input_shape):
        """Geliştirilmiş encoder for contrastive learning."""
        inputs = layers.Input(shape=input_shape)
        x = layers.Dense(32, activation='gelu')(inputs)
        x = layers.Dropout(0.05)(x)
        
        for _ in range(4):
            x = self.build_transformer_block(x)
        
        x = layers.GlobalAveragePooling1D()(x)
        x = layers.Dense(128, activation='gelu')(x)
        outputs = layers.Dense(64)(x)
        
        return models.Model(inputs, outputs)

    def contrastive_loss(self, labels, z1, z2, margin=1.0):
        """Kendi contrastive loss fonksiyonumuz."""
        # Türleri float32'ye çevir
        labels = tf.cast(labels, tf.float32)
        z1 = tf.cast(z1, tf.float32)
        z2 = tf.cast(z2, tf.float32)
        margin = tf.cast(margin, tf.float32)

        # Mesafeleri hesapla
        squared_distance = tf.reduce_sum(tf.square(z1 - z2), axis=-1)
        distance = tf.sqrt(squared_distance + tf.keras.backend.epsilon())

        # Pozitif ve negatif çiftler için kayıp
        positive_loss = labels * squared_distance
        negative_loss = (1 - labels) * tf.square(tf.maximum(margin - distance, 0))
        loss = 0.5 * (positive_loss + negative_loss)
        return tf.reduce_mean(loss)

    def pretrain(self, X_train, epochs=3):
        """Contrastive learning ile pretraining."""
        encoder = self.build_encoder(X_train.shape[1:])
        X_pos, X_neg = create_contrastive_pairs(X_train)
        
        inputs1 = layers.Input(shape=X_train.shape[1:])
        inputs2 = layers.Input(shape=X_train.shape[1:])
        z1 = encoder(inputs1)
        z2 = encoder(inputs2)
        model = models.Model([inputs1, inputs2], [z1, z2])
        
        optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)

        # Kendi loss fonksiyonumuzu kullanarak modeli derle
        @tf.function
        def train_step(X1, X2, labels):
            with tf.GradientTape() as tape:
                z1, z2 = model([X1, X2], training=True)
                loss = self.contrastive_loss(labels, z1, z2)
            gradients = tape.gradient(loss, model.trainable_variables)
            optimizer.apply_gradients(zip(gradients, model.trainable_variables))
            return loss

        # Eğitim döngüsü
        batch_size = 128
        for epoch in range(epochs):
            print(f"Epoch {epoch+1}/{epochs}")
            for i in range(0, len(X_pos), batch_size):
                X1_batch = X_pos[i:i+batch_size]
                X2_batch = X_neg[i:i+batch_size]
                labels_batch = np.ones(len(X1_batch))
                loss = train_step(X1_batch, X2_batch, labels_batch)
                print(f"Batch {i//batch_size+1}: Loss = {loss.numpy():.4f}")
        
        return encoder

    def train(self, X_train, Y_train, X_val, Y_val, save_path='EggZayn_final.h9_4'):
        """Ultra gelişmiş ve hatasız eğitim."""
        encoder = self.pretrain(X_train)
        inputs = layers.Input(shape=X_train.shape[1:])
        x = encoder(inputs)
        x = layers.Dense(256, activation='gelu')(x)
        x = layers.Dropout(0.05)(x)
        outputs = layers.Dense(4, activation='softmax', dtype='float32')(x)
        self.model = models.Model(inputs, outputs)
        
        optimizer = tf.keras.optimizers.Adam(learning_rate=2e-4)
        self.model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy'])
        
        callbacks = [
            tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=2, restore_best_weights=True),
            tf.keras.callbacks.ModelCheckpoint(save_path, save_best_only=True, monitor='val_accuracy', mode='max'),
            tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=1, min_lr=1e-6)
        ]
        
        self.history = self.model.fit(X_train, Y_train, epochs=10, batch_size=128, 
                                      validation_data=(X_val, Y_val), callbacks=callbacks, verbose=1)
        
        converter = tf.lite.TFLiteConverter.from_keras_model(self.model)
        tflite_model = converter.convert()
        with open(save_path.replace('.h9_4', '.tflite'), 'wb') as f:
            f.write(tflite_model)
        
        print(f"EggZayn: Model {save_path} ve {save_path.replace('.h9_4', '.tflite')} olarak kaydedildi.")
        return self.history

    def evaluate(self, X_test, Y_test):
        if self.model is None:
            raise ValueError("EggZayn: Model eğitilmedi veya yüklenmedi.")
        
        loss, accuracy = self.model.evaluate(X_test, Y_test, verbose=0)
        Y_pred = np.argmax(self.model.predict(X_test, verbose=0), axis=1)
        report = classification_report(Y_test, Y_pred, target_names=self.class_names)
        cm = confusion_matrix(Y_test, Y_pred)
        return loss, accuracy, report, cm

    def predict(self, signal_input):
        """Prompt tabanlı, ultra gelişmiş tahmin ve raporlama."""
        if self.model is None:
            if os.path.exists('EggZayn_final.h9_4'):
                self.model = tf.keras.models.load_model('EggZayn_final.h9_4')
            else:
                raise ValueError("EggZayn: Model bulunamadı.")
        
        start_time = time.time()
        X_processed = self.process_signal(signal_input)
        predictions = self.model.predict(X_processed, verbose=0)
        predicted_classes = np.argmax(predictions, axis=1)
        probabilities = [max(prob) for prob in predictions]
        analysis_time = time.time() - start_time
        
        results = [(self.class_names[pred], prob) for pred, prob in zip(predicted_classes, probabilities)]
        
        # Profesyonel raporlama
        report = f"Analiz Raporu - {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n"
        report += f"Toplam Örnek: {len(results)}\n"
        report += f"Analiz Süresi: {analysis_time:.3f} saniye\n"
        report += "Sonuçlar:\n"
        for i, (label, prob) in enumerate(results):
            report += f"Örnek {i+1}: {label} (Güven: {prob*100:.2f}%)\n"
        
        return results, report

    def load_model(self, model_path='EggZayn_final.h9_4'):
        self.model = tf.keras.models.load_model(model_path)
        print(f"EggZayn: Model {model_path} yüklendi.")

# GUI: EggZaynGUI
class EggZaynGUI:
    def __init__(self, root):
        self.root = root
        self.root.title("EggZayn v9.4")
        self.root.geometry("1200x900")
        self.root.configure(bg='#1A2526')
        
        self.model = EggZaynModel()
        self.X_train, self.Y_train = None, None
        self.X_val, self.Y_val = None, None
        self.X_test, self.Y_test = None, None
        
        self.create_widgets()

    def create_widgets(self):
        style = ttk.Style()
        style.configure('TButton', font=('Arial', 14, 'bold'), background='#00A8E8', foreground='white')
        style.configure('TLabel', font=('Arial', 12), background='#1A2526', foreground='#ECF0F1')
        
        top_frame = ttk.Frame(self.root)
        top_frame.pack(pady=20)
        
        ttk.Button(top_frame, text="EggZayn'ı Eğit (EEGMMIDB)", command=self.run_full_process_thread).pack(side=tk.LEFT, padx=10)
        ttk.Button(top_frame, text="Kendi Veri Setimle Eğit", command=self.run_custom_train_thread).pack(side=tk.LEFT, padx=10)
        ttk.Button(top_frame, text="Sinyal Analiz Et", command=self.predict_new_data).pack(side=tk.LEFT, padx=10)
        
        self.status_label = ttk.Label(self.root, text="Durum: Hazır")
        self.status_label.pack(pady=10)
        
        self.progress = ttk.Progressbar(self.root, length=500, mode='determinate')
        self.progress.pack(pady=10)
        
        self.result_frame = ttk.Frame(self.root)
        self.result_frame.pack(pady=10, fill=tk.BOTH, expand=True)
        self.result_text = tk.Text(self.result_frame, height=15, width=100, bg='#ECF0F1', fg='#2C3E50', font=('Arial', 11))
        self.result_text.pack(pady=5, padx=5)
        
        self.fig, (self.ax1, self.ax2) = plt.subplots(1, 2, figsize=(12, 5), dpi=100)
        self.fig.patch.set_facecolor('#1A2526')
        self.canvas = FigureCanvasTkAgg(self.fig, master=self.root)
        self.canvas.get_tk_widget().pack(pady=10)
        self.toolbar = NavigationToolbar2Tk(self.canvas, self.root)
        self.toolbar.update()
        self.toolbar.pack()

    def full_process(self):
        self.status_label.config(text="EggZayn: Veri hazırlama aşaması...")
        self.progress['value'] = 0
        self.root.update()
        
        self.result_text.delete(1.0, tk.END)
        self.result_text.insert(tk.END, "EggZayn: EEGMMIDB hazırlanıyor...\n")
        self.root.update()
        start_time = time.time()
        try:
            X_train, Y_train, X_val, Y_val, X_test, Y_test = self.model.prepare_eegmmidb_data()
            self.X_train, self.Y_train = X_train, Y_train
            self.X_val, self.Y_val = X_val, Y_val
            self.X_test, self.Y_test = X_test, Y_test
            self.progress['value'] = 33
            self.result_text.insert(tk.END, f"EggZayn: Veri hazır! Süre: {time.time() - start_time:.2f} saniye\n")
        except Exception as e:
            self.result_text.insert(tk.END, f"Hata: Veri hazırlama başarısız: {e}\n")
            messagebox.showerror("Hata", f"EggZayn: Veri hazırlama başarısız: {e}")
            return
        
        self.status_label.config(text="EggZayn: Model eğitim aşaması...")
        self.result_text.insert(tk.END, "EggZayn: Model eğitiliyor...\n")
        self.root.update()
        start_time = time.time()
        try:
            self.model.train(self.X_train, self.Y_train, self.X_val, self.Y_val)
            self.progress['value'] = 66
            self.result_text.insert(tk.END, f"EggZayn: Eğitim tamamlandı! Süre: {time.time() - start_time:.2f} saniye\n")
            self.update_training_plot()
        except Exception as e:
            self.result_text.insert(tk.END, f"Hata: Eğitim başarısız: {e}\n")
            messagebox.showerror("Hata", f"EggZayn: Eğitim başarısız: {e}")
            return
        
        self.status_label.config(text="EggZayn: Değerlendirme aşaması...")
        self.result_text.insert(tk.END, "EggZayn: Model değerlendiriliyor...\n")
        self.root.update()
        start_time = time.time()
        try:
            loss, accuracy, report, cm = self.model.evaluate(self.X_test, self.Y_test)
            self.progress['value'] = 100
            self.result_text.insert(tk.END, f"EggZayn: Değerlendirme tamamlandı! Süre: {time.time() - start_time:.2f} saniye\n")
            self.result_text.insert(tk.END, f"\nTest Loss: {loss:.4f}\nTest Accuracy: {accuracy:.4f}\n\nClassification Report:\n{report}\n")
            
            self.ax2.clear()
            sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=self.model.class_names, yticklabels=self.model.class_names, ax=self.ax2)
            self.ax2.set_title('EggZayn Confusion Matrix', color='white')
            self.ax2.set_xlabel('Predicted', color='white')
            self.ax2.set_ylabel('True', color='white')
            self.ax2.tick_params(colors='white')
            self.canvas.draw()
            
            self.status_label.config(text="EggZayn: Model hazır!")
        except Exception as e:
            self.result_text.insert(tk.END, f"Hata: Değerlendirme başarısız: {e}\n")
            messagebox.showerror("Hata", f"EggZayn: Değerlendirme başarısız: {e}")

    def custom_train(self):
        file_path = filedialog.askopenfilename(title="EEG Veri Dosyasını Seç (EDF veya NumPy)", 
                                               filetypes=[("EDF files", "*.edf"), ("NumPy files", "*.npy")])
        if not file_path:
            return
        
        self.status_label.config(text="EggZayn: Kendi veri seti hazırlanıyor...")
        self.progress['value'] = 0
        self.root.update()
        
        self.result_text.delete(1.0, tk.END)
        self.result_text.insert(tk.END, "EggZayn: Kendi veri seti hazırlanıyor...\n")
        self.root.update()
        start_time = time.time()
        try:
            if file_path.endswith('.npy'):
                data = np.load(file_path, allow_pickle=True)
                if 'X' not in data or 'Y' not in data:
                    raise ValueError("EggZayn: .npy dosyasında 'X' ve 'Y' anahtarları olmalı.")
                X_temp, Y_temp = data['X'], data['Y']
                X_train, X_temp, Y_train, Y_temp = train_test_split(X_temp, Y_temp, test_size=0.3, random_state=42, stratify=Y_temp)
                X_val, X_test, Y_val, Y_test = train_test_split(X_temp, Y_temp, test_size=0.5, random_state=42, stratify=Y_temp)
            else:
                X_train, Y_train, X_val, Y_val, X_test, Y_test = self.model.prepare_custom_data(file_path)
            self.X_train, self.Y_train = X_train, Y_train
            self.X_val, self.Y_val = X_val, Y_val
            self.X_test, self.Y_test = X_test, Y_test
            self.progress['value'] = 33
            self.result_text.insert(tk.END, f"EggZayn: Kendi veri hazır! Süre: {time.time() - start_time:.2f} saniye\n")
        except Exception as e:
            self.result_text.insert(tk.END, f"Hata: Kendi veri hazırlama başarısız: {e}\n")
            messagebox.showerror("Hata", f"EggZayn: Kendi veri hazırlama başarısız: {e}")
            return
        
        self.status_label.config(text="EggZayn: Model eğitim aşaması...")
        self.result_text.insert(tk.END, "EggZayn: Model eğitiliyor...\n")
        self.root.update()
        start_time = time.time()
        try:
            self.model.train(self.X_train, self.Y_train, self.X_val, self.Y_val)
            self.progress['value'] = 66
            self.result_text.insert(tk.END, f"EggZayn: Eğitim tamamlandı! Süre: {time.time() - start_time:.2f} saniye\n")
            self.update_training_plot()
        except Exception as e:
            self.result_text.insert(tk.END, f"Hata: Eğitim başarısız: {e}\n")
            messagebox.showerror("Hata", f"EggZayn: Eğitim başarısız: {e}")
            return
        
        self.status_label.config(text="EggZayn: Değerlendirme aşaması...")
        self.result_text.insert(tk.END, "EggZayn: Model değerlendiriliyor...\n")
        self.root.update()
        start_time = time.time()
        try:
            loss, accuracy, report, cm = self.model.evaluate(self.X_test, self.Y_test)
            self.progress['value'] = 100
            self.result_text.insert(tk.END, f"EggZayn: Değerlendirme tamamlandı! Süre: {time.time() - start_time:.2f} saniye\n")
            self.result_text.insert(tk.END, f"\nTest Loss: {loss:.4f}\nTest Accuracy: {accuracy:.4f}\n\nClassification Report:\n{report}\n")
            
            self.ax2.clear()
            sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=self.model.class_names, yticklabels=self.model.class_names, ax=self.ax2)
            self.ax2.set_title('EggZayn Confusion Matrix', color='white')
            self.ax2.set_xlabel('Predicted', color='white')
            self.ax2.set_ylabel('True', color='white')
            self.ax2.tick_params(colors='white')
            self.canvas.draw()
            
            self.status_label.config(text="EggZayn: Model hazır")
        except Exception as e:
            self.result_text.insert(tk.END, f"Hata: Değerlendirme başarısız: {e}\n")
            messagebox.showerror("Hata", f"EggZayn: Değerlendirme başarısız: {e}")

    def update_training_plot(self):
        if self.model.history:
            self.ax1.clear()
            self.ax1.plot(self.model.history.history['accuracy'], label='Training Accuracy', color='cyan')
            self.ax1.plot(self.model.history.history['val_accuracy'], label='Validation Accuracy', color='orange')
            self.ax1.plot(self.model.history.history['loss'], label='Training Loss', color='red')
            self.ax1.plot(self.model.history.history['val_loss'], label='Validation Loss', color='purple')
            self.ax1.set_title('EggZayn Training Metrics', color='white')
            self.ax1.set_xlabel('Epoch', color='white')
            self.ax1.set_ylabel('Value', color='white')
            self.ax1.legend(facecolor='#1A2526', edgecolor='white', loc='best', labelcolor='white')
            self.ax1.tick_params(colors='white')
            self.ax1.set_facecolor('#ECF0F1')
            self.canvas.draw()

    def predict_new_data(self):
        file_path = filedialog.askopenfilename(title="EEG Sinyal Dosyasını Seç (EDF veya NumPy)", 
                                               filetypes=[("EDF files", "*.edf"), ("NumPy files", "*.npy")])
        if not file_path:
            return
        
        self.status_label.config(text="EggZayn: Sinyal analiz ediliyor...")
        self.progress['value'] = 0
        self.root.update()
        
        self.result_text.delete(1.0, tk.END)
        self.result_text.insert(tk.END, "EggZayn: Sinyal analiz ediliyor...\n")
        self.root.update()
        try:
            predictions, report = self.model.predict(file_path)
            self.progress['value'] = 100
            self.result_text.insert(tk.END, report)
            
            pred_probs = np.array([prob for _, prob in predictions])
            self.ax1.clear()
            self.ax1.bar(self.model.class_names, pred_probs.mean(axis=0), color='skyblue', edgecolor='black')
            self.ax1.set_title('EggZayn Ortalama Tahmin Olasılıkları', color='white')
            self.ax1.set_ylabel('Olasılık', color='white')
            self.ax1.set_ylim(0, 1)
            self.ax1.tick_params(colors='white')
            self.ax1.set_facecolor('#ECF0F1')
            
            self.ax2.clear()
            self.canvas.draw()
            
            self.status_label.config(text="EggZayn: Analiz tamamlandı!")
        except Exception as e:
            self.result_text.insert(tk.END, f"Hata: Sinyal analizi başarısız: {e}\n")
            messagebox.showerror("Hata", f"EggZayn: Sinyal analizi başarısız: {e}")

    def run_full_process_thread(self):
        threading.Thread(target=self.full_process, daemon=True).start()

    def run_custom_train_thread(self):
        threading.Thread(target=self.custom_train, daemon=True).start()

if __name__ == '__main__':
    root = tk.Tk()
    app = EggZaynGUI(root)
    root.mainloop()