NextGenC's picture
Upload 9 files
6f35956 verified
# ==============================================================================
# EvoNet Optimizer - v3 - Daha İleri İyileştirmeler
# Açıklama: Çaprazlama, Kontrol Noktası eklenmiş, Adaptif Mutasyon ve
# Gelişmiş Fitness için kavramsal öneriler içeren versiyon.
# ==============================================================================
import os
import subprocess
import sys
import argparse
import random
import logging
from datetime import datetime
import json
import pickle # Checkpointing için
import time # Checkpointing için
from typing import List, Tuple, Dict, Any, Optional
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential, load_model, clone_model
from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau
import matplotlib.pyplot as plt
from scipy.stats import kendalltau
# --- Sabitler ve Varsayılan Değerler ---
DEFAULT_SEQ_LENGTH = 10
DEFAULT_POP_SIZE = 50
DEFAULT_GENERATIONS = 50
DEFAULT_CROSSOVER_RATE = 0.6 # Çaprazlama uygulama olasılığı
DEFAULT_MUTATION_RATE = 0.4 # Mutasyon uygulama olasılığı (eğer çaprazlama olmazsa)
DEFAULT_WEIGHT_MUT_RATE = 0.8
DEFAULT_ACTIVATION_MUT_RATE = 0.2 # Aktivasyon mutasyonu hala deneysel
DEFAULT_MUTATION_STRENGTH = 0.1
DEFAULT_TOURNAMENT_SIZE = 5
DEFAULT_ELITISM_COUNT = 2
DEFAULT_EPOCHS_FINAL_TRAIN = 100
DEFAULT_BATCH_SIZE = 64
DEFAULT_OUTPUT_BASE_DIR = os.path.join(os.getcwd(), "evonet_runs_v3")
DEFAULT_CHECKPOINT_INTERVAL = 10 # Kaç nesilde bir checkpoint alınacağı (0 = kapalı)
# --- Loglama Ayarları ---
# (setup_logging fonksiyonu öncekiyle aynı, tekrar eklemiyorum)
def setup_logging(log_dir: str, log_level=logging.INFO) -> None:
log_filename = os.path.join(log_dir, 'evolution_run.log')
for handler in logging.root.handlers[:]: logging.root.removeHandler(handler)
logging.basicConfig(
level=log_level,
format='%(asctime)s - %(levelname)-8s - %(message)s',
handlers=[
logging.FileHandler(log_filename, mode='a'), # 'a' mode append for resuming
logging.StreamHandler(sys.stdout)
]
)
logging.info("Logging setup complete.")
# --- GPU Kontrolü ---
# (check_gpu fonksiyonu öncekiyle aynı, tekrar eklemiyorum)
def check_gpu() -> bool:
gpus = tf.config.list_physical_devices('GPU')
if gpus:
try:
for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.list_logical_devices('GPU')
logging.info(f"{len(gpus)} Physical GPUs, {len(logical_gpus)} Logical GPUs found.")
if logical_gpus: logging.info(f"Using GPU: {tf.config.experimental.get_device_details(gpus[0])['device_name']}")
return True
except RuntimeError as e:
logging.error(f"Error setting memory growth for GPU: {e}", exc_info=True)
return False
else:
logging.warning("GPU not found. Using CPU.")
return False
# --- Veri Üretimi ---
# (generate_data fonksiyonu öncekiyle aynı, tekrar eklemiyorum)
def generate_data(num_samples: int, seq_length: int) -> Tuple[np.ndarray, np.ndarray]:
logging.info(f"Generating {num_samples} samples with sequence length {seq_length}...")
try:
X = np.random.rand(num_samples, seq_length).astype(np.float32) * 100
y = np.sort(X, axis=1).astype(np.float32)
logging.info("Data generation successful.")
return X, y
except Exception as e:
logging.error(f"Error during data generation: {e}", exc_info=True)
raise
# --- Neuroevolution Çekirdeği ---
def create_individual(seq_length: int, input_shape: Tuple) -> Sequential:
"""Rastgele mimariye sahip bir Keras Sequential modeli oluşturur ve derler."""
# (Fonksiyon öncekiyle büyük ölçüde aynı, isim revize edildi)
try:
model = Sequential(name=f"model_rnd_{random.randint(10000, 99999)}")
num_hidden_layers = random.randint(1, 4)
neurons_per_layer = [random.randint(8, 64) for _ in range(num_hidden_layers)]
activations = [random.choice(['relu', 'tanh', 'sigmoid']) for _ in range(num_hidden_layers)]
model.add(Input(shape=input_shape))
for i in range(num_hidden_layers):
model.add(Dense(neurons_per_layer[i], activation=activations[i]))
model.add(Dense(seq_length, activation='linear'))
model.compile(optimizer=Adam(learning_rate=0.001), loss='mse')
return model
except Exception as e:
logging.error(f"Error creating individual model: {e}", exc_info=True)
raise
@tf.function
def get_predictions(model: Sequential, X: tf.Tensor) -> tf.Tensor:
"""Model tahminlerini tf.function kullanarak alır."""
return model(X, training=False)
def calculate_fitness(individual: Sequential, X: np.ndarray, y: np.ndarray, batch_size: int, fitness_params: Dict = None) -> float:
"""Bir bireyin fitness değerini hesaplar. Gelişmiş fitness için öneri içerir."""
# --- KAVRAMSAL: Gelişmiş Fitness Fonksiyonu ---
# Burada sadece MSE kullanılıyor. Daha gelişmiş bir fitness için:
# 1. Diğer metrikleri hesapla (örn: Kendall Tau).
# 2. Model karmaşıklığını hesapla (örn: parametre sayısı).
# 3. Bu değerleri ağırlıklı bir formülle birleştir.
# fitness_params = fitness_params or {}
# w_mse = fitness_params.get('w_mse', 1.0)
# w_tau = fitness_params.get('w_tau', 0.1)
# w_comp = fitness_params.get('w_comp', 0.0001)
# --------------------------------------------
if not isinstance(X, tf.Tensor): X = tf.cast(X, tf.float32)
if not isinstance(y, tf.Tensor): y = tf.cast(y, tf.float32)
try:
y_pred_tf = get_predictions(individual, X)
mse = tf.reduce_mean(tf.square(y - y_pred_tf))
mse_val = mse.numpy()
fitness_score = 1.0 / (mse_val + 1e-8) # Temel fitness
# --- KAVRAMSAL: Gelişmiş Fitness Hesabı ---
# if w_tau > 0 or w_comp > 0:
# # Kendall Tau hesapla (maliyetli olabilir, örneklem gerekebilir)
# tau_val = calculate_avg_kendall_tau(y.numpy(), y_pred_tf.numpy(), sample_size=100) # Örnek bir fonksiyon
# # Karmaşıklık hesapla
# complexity = individual.count_params()
# # Birleştirilmiş fitness
# fitness_score = w_mse * fitness_score + w_tau * tau_val - w_comp * complexity
# --------------------------------------------
if not np.isfinite(fitness_score) or fitness_score < -1e6: # Negatif olabilen fitness için kontrol
logging.warning(f"Non-finite or very low fitness ({fitness_score:.4g}) for model {individual.name}. Assigning minimal fitness.")
return -1e7 # Gelişmiş fitness negatif olabileceği için daha düşük sınır
return float(fitness_score)
except Exception as e:
logging.error(f"Error during fitness calculation for model {individual.name}: {e}", exc_info=True)
return -1e7
# (Aktivasyon mutasyonu hala deneysel, ana odak ağırlık mutasyonunda)
def mutate_individual(individual: Sequential, weight_mut_rate: float, mut_strength: float) -> Sequential:
"""Bir bireye ağırlık bozulması mutasyonu uygular."""
try:
mutated_model = clone_model(individual)
mutated_model.set_weights(individual.get_weights())
mutated = False
if random.random() < weight_mut_rate: # Ağırlık mutasyon olasılığı (dışarıdan gelen genel rate ile birleştirilebilir)
mutated = True
for layer in mutated_model.layers:
if isinstance(layer, Dense) and layer.get_weights():
weights_biases = layer.get_weights()
new_weights_biases = [wb + np.random.normal(0, mut_strength, wb.shape).astype(np.float32) for wb in weights_biases]
layer.set_weights(new_weights_biases)
if mutated:
mutated_model.compile(optimizer=Adam(learning_rate=0.001), loss='mse')
mutated_model._name = f"mutated_{individual.name}_{random.randint(1000,9999)}"
return mutated_model
except Exception as e:
logging.error(f"Error during mutation of model {individual.name}: {e}", exc_info=True)
return individual
def check_architecture_compatibility(model1: Sequential, model2: Sequential) -> bool:
"""İki modelin basit çaprazlama için uyumlu olup olmadığını kontrol eder (katman sayısı ve tipleri)."""
if len(model1.layers) != len(model2.layers):
return False
for l1, l2 in zip(model1.layers, model2.layers):
if type(l1) != type(l2):
return False
# Daha detaylı kontrol (nöron sayısı vb.) eklenebilir, ancak basit tutalım.
return True
def crossover_individuals(parent1: Sequential, parent2: Sequential) -> Tuple[Optional[Sequential], Optional[Sequential]]:
"""İki ebeveynden basit ağırlık ortalaması/karıştırması ile çocuklar oluşturur."""
# Mimari uyumluluğunu kontrol et (basit versiyon)
if not check_architecture_compatibility(parent1, parent2):
logging.debug("Skipping crossover due to incompatible architectures.")
return None, None # Uyumsuzsa çaprazlama yapma
try:
# Çocukları ebeveynleri klonlayarak başlat
child1 = clone_model(parent1)
child2 = clone_model(parent2)
child1.set_weights(parent1.get_weights()) # Başlangıç ağırlıklarını ata
child2.set_weights(parent2.get_weights())
p1_weights = parent1.get_weights()
p2_weights = parent2.get_weights()
child1_new_weights = []
child2_new_weights = []
# Katman katman ağırlıkları çaprazla
for i in range(len(p1_weights)): # Ağırlık matrisleri/bias vektörleri üzerinde döngü
w1 = p1_weights[i]
w2 = p2_weights[i]
# Basit ortalama veya rastgele seçim (örnek: rastgele seçim)
mask = np.random.rand(*w1.shape) < 0.5
cw1 = np.where(mask, w1, w2)
cw2 = np.where(mask, w2, w1) # Ters maske ile
# Veya basit ortalama: cw1 = (w1 + w2) / 2.0; cw2 = cw1
child1_new_weights.append(cw1.astype(np.float32))
child2_new_weights.append(cw2.astype(np.float32))
child1.set_weights(child1_new_weights)
child2.set_weights(child2_new_weights)
# Çocukları derle
child1.compile(optimizer=Adam(learning_rate=0.001), loss='mse')
child2.compile(optimizer=Adam(learning_rate=0.001), loss='mse')
child1._name = f"xover_{parent1.name[:10]}_{parent2.name[:10]}_c1_{random.randint(1000,9999)}"
child2._name = f"xover_{parent1.name[:10]}_{parent2.name[:10]}_c2_{random.randint(1000,9999)}"
#logging.debug(f"Crossover performed between {parent1.name} and {parent2.name}")
return child1, child2
except Exception as e:
logging.error(f"Error during crossover between {parent1.name} and {parent2.name}: {e}", exc_info=True)
return None, None # Hata olursa çocuk üretme
# (tournament_selection fonksiyonu öncekiyle aynı)
def tournament_selection(population: List[Sequential], fitness_scores: List[float], k: int) -> Sequential:
if not population: raise ValueError("Population cannot be empty.")
if len(population) < k: k = len(population)
try:
tournament_indices = random.sample(range(len(population)), k)
tournament_fitness = [fitness_scores[i] for i in tournament_indices]
winner_local_idx = np.argmax(tournament_fitness)
winner_global_idx = tournament_indices[winner_local_idx]
return population[winner_global_idx]
except Exception as e:
logging.error(f"Error during tournament selection: {e}", exc_info=True)
return random.choice(population)
# --- Checkpointing ---
def save_checkpoint(output_dir: str, generation: int, population: List[Sequential], rnd_state: Tuple, np_rnd_state: Tuple, tf_rnd_state: Any):
"""Evrim durumunu kaydeder."""
checkpoint_dir = os.path.join(output_dir, "checkpoints")
os.makedirs(checkpoint_dir, exist_ok=True)
checkpoint_file = os.path.join(checkpoint_dir, f"evo_gen_{generation}.pkl")
logging.info(f"Saving checkpoint for generation {generation} to {checkpoint_file}...")
try:
# Modelleri kaydetmek için ağırlıkları ve konfigürasyonları al
population_state = []
for model in population:
try:
# Önce modeli diske kaydetmeyi dene (daha sağlam olabilir ama yavaş)
# model_path = os.path.join(checkpoint_dir, f"model_gen{generation}_{model.name}.keras")
# model.save(model_path)
# population_state.append({"config": model.get_config(), "saved_path": model_path})
# Alternatif: Ağırlık ve config'i pickle içine göm (daha riskli)
population_state.append({
"name": model.name,
"config": model.get_config(),
"weights": model.get_weights()
})
except Exception as e:
logging.error(f"Could not serialize model {model.name} for checkpoint: {e}")
population_state.append(None) # Hata durumunda None ekle
state = {
"generation": generation,
"population_state": [p for p in population_state if p is not None], # Başarısız olanları çıkarma
"random_state": rnd_state,
"numpy_random_state": np_rnd_state,
"tensorflow_random_state": tf_rnd_state, # TensorFlow state'i pickle ile kaydetmek sorunlu olabilir
"timestamp": datetime.now().isoformat()
}
with open(checkpoint_file, 'wb') as f:
pickle.dump(state, f)
logging.info(f"Checkpoint saved successfully for generation {generation}.")
except Exception as e:
logging.error(f"Failed to save checkpoint for generation {generation}: {e}", exc_info=True)
def load_checkpoint(checkpoint_path: str) -> Optional[Dict]:
"""Kaydedilmiş evrim durumunu yükler."""
if not os.path.exists(checkpoint_path):
logging.error(f"Checkpoint file not found: {checkpoint_path}")
return None
logging.info(f"Loading checkpoint from {checkpoint_path}...")
try:
with open(checkpoint_path, 'rb') as f:
state = pickle.load(f)
population = []
for model_state in state["population_state"]:
try:
# Eğer model ayrı kaydedildiyse:
# model = load_model(model_state["saved_path"])
# population.append(model)
# Pickle içine gömüldüyse:
model = Sequential.from_config(model_state["config"])
model.set_weights(model_state["weights"])
# Modelin yeniden derlenmesi GEREKİR!
model.compile(optimizer=Adam(learning_rate=0.001), loss='mse')
model._name = model_state.get("name", f"model_loaded_{random.randint(1000,9999)}") # İsmi geri yükle
population.append(model)
except Exception as e:
logging.error(f"Failed to load model state from checkpoint for model {model_state.get('name', 'UNKNOWN')}: {e}")
# Sadece başarıyla yüklenen modelleri al
state["population"] = population
if not population:
logging.error("Failed to load any model from the checkpoint population state.")
return None # Hiç model yüklenemediyse checkpoint geçersiz
logging.info(f"Checkpoint loaded successfully. Resuming from generation {state['generation'] + 1}.")
return state
except Exception as e:
logging.error(f"Failed to load checkpoint from {checkpoint_path}: {e}", exc_info=True)
return None
def find_latest_checkpoint(output_dir: str) -> Optional[str]:
"""Verilen klasördeki en son checkpoint dosyasını bulur."""
checkpoint_dir = os.path.join(output_dir, "checkpoints")
if not os.path.isdir(checkpoint_dir):
return None
checkpoints = [f for f in os.listdir(checkpoint_dir) if f.startswith("evo_gen_") and f.endswith(".pkl")]
if not checkpoints:
return None
# Dosya adından nesil numarasını çıkar ve en yükseğini bul
latest_gen = -1
latest_file = None
for cp in checkpoints:
try:
gen_num = int(cp.split('_')[2].split('.')[0])
if gen_num > latest_gen:
latest_gen = gen_num
latest_file = os.path.join(checkpoint_dir, cp)
except (IndexError, ValueError):
logging.warning(f"Could not parse generation number from checkpoint file: {cp}")
continue
return latest_file
# --- Ana Evrim Döngüsü (Checkpoint ve Crossover ile) ---
def evolve_population_v3(population: List[Sequential], X: np.ndarray, y: np.ndarray, start_generation: int, total_generations: int,
crossover_rate: float, mutation_rate: float, weight_mut_rate: float, mut_strength: float,
tournament_size: int, elitism_count: int, batch_size: int,
output_dir: str, checkpoint_interval: int) -> Tuple[Optional[Sequential], List[float], List[float]]:
"""Evrimsel süreci çalıştırır (Checkpoint ve Crossover içerir)."""
best_fitness_history = []
avg_fitness_history = []
best_model_overall = None
best_fitness_overall = -np.inf
X_tf = tf.cast(X, tf.float32)
y_tf = tf.cast(y, tf.float32)
# --- KAVRAMSAL: Uyarlanabilir Mutasyon Oranı ---
# current_mutation_rate = mutation_rate # Başlangıç değeri
# stagnation_counter = 0
# --------------------------------------------
for gen in range(start_generation, total_generations):
generation_start_time = datetime.now()
# 1. Fitness Değerlendirme
try:
fitness_scores = [calculate_fitness(ind, X_tf, y_tf, batch_size) for ind in population]
except Exception as e:
logging.critical(f"Error calculating fitness for population in Generation {gen+1}: {e}", exc_info=True)
if best_model_overall: return best_model_overall, best_fitness_history, avg_fitness_history
else: raise
# 2. İstatistikler ve En İyiyi Takip
current_best_idx = np.argmax(fitness_scores)
current_best_fitness = fitness_scores[current_best_idx]
avg_fitness = np.mean(fitness_scores)
best_fitness_history.append(current_best_fitness)
avg_fitness_history.append(avg_fitness)
new_best_found = False
if current_best_fitness > best_fitness_overall:
best_fitness_overall = current_best_fitness
new_best_found = True
try:
best_model_overall = clone_model(population[current_best_idx])
best_model_overall.set_weights(population[current_best_idx].get_weights())
best_model_overall.compile(optimizer=Adam(), loss='mse')
logging.info(f"Generation {gen+1}: *** New overall best fitness found: {best_fitness_overall:.6f} ***")
except Exception as e:
logging.error(f"Could not clone new best model: {e}", exc_info=True)
best_fitness_overall = current_best_fitness # Sadece fitness'ı güncelle
generation_time = (datetime.now() - generation_start_time).total_seconds()
logging.info(f"Generation {gen+1}/{total_generations} | Best Fitness: {current_best_fitness:.6f} | Avg Fitness: {avg_fitness:.6f} | Time: {generation_time:.2f}s")
# --- KAVRAMSAL: Uyarlanabilir Mutasyon Oranı Güncelleme ---
# if new_best_found:
# stagnation_counter = 0
# # current_mutation_rate = max(min_mutation_rate, current_mutation_rate * 0.98) # Azalt
# else:
# stagnation_counter += 1
# if stagnation_counter > stagnation_limit:
# # current_mutation_rate = min(max_mutation_rate, current_mutation_rate * 1.1) # Artır
# stagnation_counter = 0 # Sayacı sıfırla
# logging.debug(f"Current mutation rate: {current_mutation_rate:.4f}")
# --------------------------------------------
# 3. Yeni Popülasyon Oluşturma
new_population = []
# 3a. Elitizm
if elitism_count > 0 and len(population) >= elitism_count:
try:
elite_indices = np.argsort(fitness_scores)[-elitism_count:]
for idx in elite_indices:
elite_clone = clone_model(population[idx])
elite_clone.set_weights(population[idx].get_weights())
elite_clone.compile(optimizer=Adam(), loss='mse')
new_population.append(elite_clone)
except Exception as e:
logging.error(f"Error during elitism: {e}", exc_info=True)
# 3b. Seçilim, Çaprazlama ve Mutasyon
num_to_generate = len(population) - len(new_population)
generated_count = 0
while generated_count < num_to_generate:
try:
# İki ebeveyn seç
parent1 = tournament_selection(population, fitness_scores, tournament_size)
parent2 = tournament_selection(population, fitness_scores, tournament_size)
child1, child2 = None, None # Çocukları başlat
# Çaprazlama uygula (belirli bir olasılıkla)
if random.random() < crossover_rate and parent1 is not parent2:
child1, child2 = crossover_individuals(parent1, parent2)
# Eğer çaprazlama yapılmadıysa veya başarısız olduysa, mutasyonla devam et
if child1 is None: # İlk çocuk oluşmadıysa
# Ebeveynlerden birini mutasyona uğrat
parent_to_mutate = parent1 # Veya parent2 veya rastgele biri
if random.random() < mutation_rate: # Genel mutasyon oranı kontrolü
child1 = mutate_individual(parent_to_mutate, weight_mut_rate, mut_strength)
else: # Mutasyon da olmazsa, ebeveyni klonla
child1 = clone_model(parent_to_mutate); child1.set_weights(parent_to_mutate.get_weights())
child1.compile(optimizer=Adam(learning_rate=0.001), loss='mse')
child1._name = f"cloned_{parent_to_mutate.name}_{random.randint(1000,9999)}"
# Yeni popülasyona ekle
if child1:
new_population.append(child1)
generated_count += 1
if generated_count >= num_to_generate: break # Gerekli sayıya ulaşıldıysa çık
else: # Çaprazlama başarılı olduysa (child1 ve child2 var)
# Çaprazlama sonrası çocuklara ayrıca mutasyon uygulama seçeneği eklenebilir
# if random.random() < post_crossover_mutation_rate: child1 = mutate(...)
# if random.random() < post_crossover_mutation_rate: child2 = mutate(...)
new_population.append(child1)
generated_count += 1
if generated_count >= num_to_generate: break
if child2: # İkinci çocuk da varsa ekle
new_population.append(child2)
generated_count += 1
if generated_count >= num_to_generate: break
except Exception as e:
logging.error(f"Error during selection/reproduction cycle: {e}", exc_info=True)
if generated_count < num_to_generate: # Eksik kalırsa rastgele doldur
logging.warning("Adding random individual due to reproduction error.")
new_population.append(create_individual(y.shape[1], X.shape[1:]))
generated_count += 1
population = new_population[:len(population)] # Popülasyon boyutunu garantile
# 4. Checkpoint Alma
if checkpoint_interval > 0 and (gen + 1) % checkpoint_interval == 0:
try:
# Rastgele durumları al
rnd_state = random.getstate()
np_rnd_state = np.random.get_state()
# tf_rnd_state = tf.random.get_global_generator().state # TF state kaydetmek zor olabilir
tf_rnd_state = None # Şimdilik None
save_checkpoint(output_dir, gen + 1, population, rnd_state, np_rnd_state, tf_rnd_state)
except Exception as e:
logging.error(f"Failed to execute checkpoint saving for generation {gen+1}: {e}", exc_info=True)
# Döngü sonu
if best_model_overall is None and population:
logging.warning("No overall best model tracked. Returning best from final population.")
final_fitness_scores = [calculate_fitness(ind, X_tf, y_tf, batch_size) for ind in population]
best_idx_final = np.argmax(final_fitness_scores)
best_model_overall = population[best_idx_final]
elif not population:
logging.error("Evolution finished with an empty population!")
return None, best_fitness_history, avg_fitness_history
logging.info(f"Evolution finished. Best fitness achieved: {best_fitness_overall:.6f}")
return best_model_overall, best_fitness_history, avg_fitness_history
# --- Grafik Çizimi (Öncekiyle aynı) ---
def plot_fitness_history(history_best: List[float], history_avg: List[float], output_dir: str) -> None:
if not history_best or not history_avg:
logging.warning("Fitness history is empty, cannot plot.")
return
try:
plt.figure(figsize=(12, 7)); plt.plot(history_best, label="Best Fitness", marker='o', linestyle='-', linewidth=2)
plt.plot(history_avg, label="Average Fitness", marker='x', linestyle='--', alpha=0.7); plt.xlabel("Generation")
plt.ylabel("Fitness Score"); plt.title("Evolutionary Fitness History"); plt.legend(); plt.grid(True); plt.tight_layout()
plot_path = os.path.join(output_dir, "fitness_history.png"); plt.savefig(plot_path); plt.close()
logging.info(f"Fitness history plot saved to {plot_path}")
except Exception as e: logging.error(f"Error plotting fitness history: {e}", exc_info=True)
# --- Değerlendirme (Öncekiyle aynı) ---
def evaluate_model(model: Sequential, X_test: np.ndarray, y_test: np.ndarray, batch_size: int) -> Dict[str, float]:
if model is None: return {"test_mse": np.inf, "avg_kendall_tau": 0.0}
logging.info("Evaluating final model on test data...")
try:
y_pred = model.predict(X_test, batch_size=batch_size, verbose=0)
test_mse = np.mean(np.square(y_test - y_pred))
logging.info(f"Final Test MSE: {test_mse:.6f}")
sample_size = min(500, X_test.shape[0]); taus = []; indices = np.random.choice(X_test.shape[0], sample_size, replace=False)
for i in indices:
try: tau, _ = kendalltau(y_test[i], y_pred[i]);
if not np.isnan(tau): taus.append(tau)
except ValueError: pass # Handle constant prediction case
avg_kendall_tau = np.mean(taus) if taus else 0.0
logging.info(f"Average Kendall's Tau (on {sample_size} samples): {avg_kendall_tau:.4f}")
return {"test_mse": float(test_mse), "avg_kendall_tau": float(avg_kendall_tau)}
except Exception as e:
logging.error(f"Error during final model evaluation: {e}", exc_info=True)
return {"test_mse": np.inf, "avg_kendall_tau": 0.0}
# --- Ana İş Akışı (Checkpoint Yükleme ile) ---
def run_pipeline_v3(args: argparse.Namespace):
"""Checkpoint ve Crossover içeren ana iş akışı."""
# Çalıştırma adı ve çıktı klasörü
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
run_name = f"evorun_{timestamp}_gen{args.generations}_pop{args.pop_size}"
# Eğer resume path verilmişse, o klasörü kullan
output_dir = args.resume_from if args.resume_from else os.path.join(args.output_base_dir, run_name)
resume_run = bool(args.resume_from)
if resume_run:
run_name = os.path.basename(output_dir) # Klasör adını kullan
logging.info(f"Attempting to resume run from: {output_dir}")
else:
try: os.makedirs(output_dir, exist_ok=True)
except OSError as e: print(f"FATAL: Could not create output directory: {output_dir}. Error: {e}", file=sys.stderr); sys.exit(1)
# Loglamayı ayarla ('a' modu ile devam etmeye uygun)
setup_logging(output_dir)
logging.info(f"========== Starting/Resuming EvoNet Pipeline Run: {run_name} ==========")
logging.info(f"Output directory: {output_dir}")
# --- Checkpoint Yükleme ---
start_generation = 0
population = []
initial_state_loaded = False
latest_checkpoint_path = find_latest_checkpoint(output_dir) if resume_run else None
if latest_checkpoint_path:
loaded_state = load_checkpoint(latest_checkpoint_path)
if loaded_state:
start_generation = loaded_state['generation'] # Kaldığı nesilden başla
population = loaded_state['population']
# Rastgele durumları geri yükle
try:
random.setstate(loaded_state['random_state'])
np.random.set_state(loaded_state['numpy_random_state'])
# tf.random.set_global_generator(tf.random.Generator.from_state(loaded_state['tensorflow_random_state'])) # TF state sorunlu olabilir
logging.info(f"Random states restored from checkpoint.")
except Exception as e:
logging.warning(f"Could not fully restore random states from checkpoint: {e}")
initial_state_loaded = True
logging.info(f"Resuming from Generation {start_generation + 1} with {len(population)} individuals.")
else:
logging.error("Failed to load checkpoint. Starting from scratch.")
resume_run = False # Checkpoint yüklenemediyse sıfırdan başla
elif resume_run:
logging.warning(f"Resume requested but no valid checkpoint found in {output_dir}. Starting from scratch.")
resume_run = False # Checkpoint yoksa sıfırdan başla
# --- Sıfırdan Başlama veya Devam Etme Ayarları ---
if not initial_state_loaded:
# Argümanları logla ve kaydet (sadece sıfırdan başlarken)
logging.info("--- Configuration ---")
args_dict = vars(args)
for k, v in args_dict.items(): logging.info(f" {k:<20}: {v}")
logging.info("---------------------")
config_path = os.path.join(output_dir, "config.json")
try:
with open(config_path, 'w') as f: json.dump(args_dict, f, indent=4, sort_keys=True)
logging.info(f"Configuration saved to {config_path}")
except Exception as e: logging.error(f"Failed to save configuration: {e}", exc_info=True)
# Rastgele tohumları ayarla
try:
random.seed(args.seed); np.random.seed(args.seed); tf.random.set_seed(args.seed)
logging.info(f"Using random seed: {args.seed}")
except Exception as e: logging.warning(f"Could not set all random seeds: {e}")
# GPU kontrolü
is_gpu_available = check_gpu()
# Veri Üretimi
try:
X_train, y_train = generate_data(args.train_samples, args.seq_length)
X_test, y_test = generate_data(args.test_samples, args.seq_length)
input_shape = X_train.shape[1:]
except Exception: logging.critical("Failed to generate data. Exiting."); sys.exit(1)
# Popülasyon Başlatma
logging.info(f"--- Initializing Population (Size: {args.pop_size}) ---")
try:
population = [create_individual(args.seq_length, input_shape) for _ in range(args.pop_size)]
logging.info("Population initialized successfully.")
except Exception: logging.critical("Failed to initialize population. Exiting."); sys.exit(1)
else:
# Checkpoint'ten devam ediliyorsa, veriyi yeniden üretmemiz gerekebilir
# veya checkpoint'e veriyi de dahil edebiliriz (büyük olabilir).
# Şimdilik veriyi yeniden üretelim.
logging.info("Reloading data for resumed run...")
is_gpu_available = check_gpu() # GPU durumunu tekrar kontrol et
try:
X_train, y_train = generate_data(args.train_samples, args.seq_length)
X_test, y_test = generate_data(args.test_samples, args.seq_length)
except Exception: logging.critical("Failed to reload data for resumed run. Exiting."); sys.exit(1)
# Config dosyasını tekrar okuyup loglayabiliriz
config_path = os.path.join(output_dir, "config.json")
try:
with open(config_path, 'r') as f: args_dict = json.load(f)
logging.info("--- Loaded Configuration (from resumed run) ---")
for k, v in args_dict.items(): logging.info(f" {k:<20}: {v}")
logging.info("-----------------------------------------------")
except Exception as e:
logging.warning(f"Could not reload config.json: {e}")
args_dict = vars(args) # Argümanları kullan
# Evrim Süreci
logging.info(f"--- Starting/Resuming Evolution ({args.generations} Total Generations) ---")
if start_generation >= args.generations:
logging.warning(f"Loaded checkpoint generation ({start_generation}) is already >= total generations ({args.generations}). Skipping evolution.")
best_model_unevolved = population[0] if population else None # En iyi modeli checkpoint'ten almaya çalışmak lazım
best_fitness_hist, avg_fitness_hist = [], [] # Geçmişi de yüklemek lazım
# TODO: Checkpoint'ten en iyi modeli ve geçmişi de yükle
# Şimdilik basitleştirilmiş - evrim atlanıyor
else:
try:
best_model_unevolved, best_fitness_hist, avg_fitness_hist = evolve_population_v3(
population, X_train, y_train, start_generation, args.generations,
args.crossover_rate, args.mutation_rate, args.weight_mut_rate, args.mutation_strength,
args.tournament_size, args.elitism_count, args.batch_size,
output_dir, args.checkpoint_interval
)
except Exception as e:
logging.critical(f"Fatal error during evolution process: {e}", exc_info=True)
sys.exit(1)
logging.info("--- Evolution Complete ---")
# (Fitness geçmişini kaydetme ve çizdirme - öncekiyle aynı)
if best_fitness_hist or avg_fitness_hist: # Sadece listeler boş değilse
# Geçmişi de checkpoint'ten yükleyip birleştirmek gerekebilir.
# Şimdilik sadece bu çalıştırmadaki kısmı kaydediyoruz/çizdiriyoruz.
# TODO: Checkpoint'ten yüklenen geçmişle birleştir.
plot_fitness_history(best_fitness_hist, avg_fitness_hist, output_dir)
history_path = os.path.join(output_dir, "fitness_history_run.csv") # Farklı isim?
try:
history_data = np.array([np.arange(start_generation + 1, start_generation + len(best_fitness_hist) + 1), best_fitness_hist, avg_fitness_hist]).T
np.savetxt(history_path, history_data, delimiter=',', header='Generation,BestFitness,AvgFitness', comments='', fmt=['%d', '%.8f', '%.8f'])
logging.info(f"Fitness history (this run) saved to {history_path}")
except Exception as e: logging.error(f"Could not save fitness history data: {e}")
else: logging.warning("Fitness history is empty, skipping saving/plotting.")
# (En iyi modelin son eğitimi, değerlendirme ve sonuç kaydı - öncekiyle aynı)
if best_model_unevolved is None:
logging.error("Evolution did not yield a best model. Skipping final training and evaluation.")
final_metrics = {"test_mse": np.inf, "avg_kendall_tau": 0.0}; final_model_path = None; training_summary = {}
else:
logging.info("--- Starting Final Training of Best Evolved Model ---")
try:
final_model = clone_model(best_model_unevolved); final_model.set_weights(best_model_unevolved.get_weights())
final_model.compile(optimizer=Adam(learning_rate=0.001), loss='mse', metrics=['mae'])
logging.info("Model Summary of Best Evolved (Untrained):"); final_model.summary(print_fn=logging.info)
early_stopping = EarlyStopping(monitor='val_loss', patience=15, restore_best_weights=True, verbose=1)
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.3, patience=7, min_lr=1e-7, verbose=1)
history = final_model.fit(X_train, y_train, epochs=args.epochs_final_train, batch_size=args.batch_size, validation_split=0.2, callbacks=[early_stopping, reduce_lr], verbose=2)
logging.info("Final training complete.")
training_summary = {"epochs_run": len(history.history['loss']), "final_train_loss": history.history['loss'][-1], "final_val_loss": history.history['val_loss'][-1]}
final_metrics = evaluate_model(final_model, X_test, y_test, args.batch_size)
final_model_path = os.path.join(output_dir, "best_evolved_model_trained.keras")
final_model.save(final_model_path); logging.info(f"Final trained model saved to {final_model_path}")
except Exception as e:
logging.error(f"Error during final training or evaluation: {e}", exc_info=True)
final_metrics = {"test_mse": np.inf, "avg_kendall_tau": 0.0}; final_model_path = None; training_summary = {"error": str(e)}
logging.info("--- Saving Final Results ---")
final_results = { # ... (öncekiyle aynı sonuç yapısı) ...
"run_info": {"run_name": run_name, "timestamp": timestamp, "output_directory": output_dir, "gpu_used": is_gpu_available, "resumed": resume_run},
"config": args_dict,
"evolution_summary": { # TODO: Checkpoint'ten yüklenen geçmişle birleştirilmeli
"generations_run_this_session": len(best_fitness_hist) if best_fitness_hist else 0,
"best_fitness_achieved_overall": best_fitness_overall if best_fitness_overall > -np.inf else None,
"best_fitness_final_gen": best_fitness_hist[-1] if best_fitness_hist else None,
"avg_fitness_final_gen": avg_fitness_hist[-1] if avg_fitness_hist else None, },
"final_training_summary": training_summary, "final_evaluation_on_test": final_metrics, "saved_model_path": final_model_path }
results_path = os.path.join(output_dir, "final_results.json")
try:
def convert_numpy_types(obj):
if isinstance(obj, np.integer): return int(obj)
elif isinstance(obj, np.floating): return float(obj)
elif isinstance(obj, np.ndarray): return obj.tolist()
return obj
with open(results_path, 'w') as f: json.dump(final_results, f, indent=4, default=convert_numpy_types)
logging.info(f"Final results summary saved to {results_path}")
except Exception as e: logging.error(f"Failed to save final results JSON: {e}", exc_info=True)
logging.info(f"========== Pipeline Run {run_name} Finished ==========")
# --- Argüman Ayrıştırıcı (Yeni Argümanlar Eklendi) ---
def parse_arguments_v3() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="EvoNet v3: Neuroevolution with Crossover & Checkpointing")
# --- Dizinler ve Kontrol ---
parser.add_argument('--output_base_dir', type=str, default=DEFAULT_OUTPUT_BASE_DIR, help='Base directory for new runs.')
parser.add_argument('--resume_from', type=str, default=None, help='Path to a previous run directory to resume from.')
parser.add_argument('--checkpoint_interval', type=int, default=DEFAULT_CHECKPOINT_INTERVAL, help='Save checkpoint every N generations (0 to disable).')
# --- Veri Ayarları ---
parser.add_argument('--seq_length', type=int, default=DEFAULT_SEQ_LENGTH, help='Length of sequences.')
parser.add_argument('--train_samples', type=int, default=5000, help='Number of training samples.')
parser.add_argument('--test_samples', type=int, default=1000, help='Number of test samples.')
# --- Evrim Parametreleri ---
parser.add_argument('--pop_size', type=int, default=DEFAULT_POP_SIZE, help='Population size.')
parser.add_argument('--generations', type=int, default=DEFAULT_GENERATIONS, help='Total number of generations.')
parser.add_argument('--crossover_rate', type=float, default=DEFAULT_CROSSOVER_RATE, help='Probability of applying crossover.')
parser.add_argument('--mutation_rate', type=float, default=DEFAULT_MUTATION_RATE, help='Probability of applying mutation (if crossover is not applied).')
parser.add_argument('--weight_mut_rate', type=float, default=DEFAULT_WEIGHT_MUT_RATE, help='Weight mutation probability within mutation.')
# parser.add_argument('--activation_mut_rate', type=float, default=DEFAULT_ACTIVATION_MUT_RATE, help='Activation mutation probability (experimental).')
parser.add_argument('--mutation_strength', type=float, default=DEFAULT_MUTATION_STRENGTH, help='Std dev for weight mutation noise.')
parser.add_argument('--tournament_size', type=int, default=DEFAULT_TOURNAMENT_SIZE, help='Tournament selection size.')
parser.add_argument('--elitism_count', type=int, default=DEFAULT_ELITISM_COUNT, help='Number of elite individuals.')
# --- Eğitim ve Değerlendirme ---
parser.add_argument('--batch_size', type=int, default=DEFAULT_BATCH_SIZE, help='Batch size.')
parser.add_argument('--epochs_final_train', type=int, default=DEFAULT_EPOCHS_FINAL_TRAIN, help='Max epochs for final training.')
# --- Tekrarlanabilirlik ---
parser.add_argument('--seed', type=int, default=None, help='Random seed (default: random).')
args = parser.parse_args()
if args.seed is None: args.seed = random.randint(0, 2**32 - 1); print(f"Generated random seed: {args.seed}")
# Basit kontrol: Crossover + Mutation oranı > 1 olmamalı (teknik olarak olabilir ama mantık gereği biri seçilmeli)
# if args.crossover_rate + args.mutation_rate > 1.0: logging.warning("Sum of crossover and mutation rates exceeds 1.0")
return args
# --- Ana Çalıştırma Bloğu ---
if __name__ == "__main__":
cli_args = parse_arguments_v3()
try:
run_pipeline_v3(cli_args)
except SystemExit: pass
except Exception as e:
print(f"\nFATAL UNHANDLED ERROR in main execution block: {e}", file=sys.stderr)
if logging.getLogger().hasHandlers(): logging.critical("FATAL UNHANDLED ERROR:", exc_info=True)
else: import traceback; print(traceback.format_exc(), file=sys.stderr)
sys.exit(1)