NextGenC commited on
Commit
da1537a
·
verified ·
1 Parent(s): 24eb964

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -61
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  language:
3
- - tr
4
  tags:
5
  - instruction-tuning
6
  - text-generation
@@ -62,63 +62,6 @@ Erynn excels at a variety of text generation tasks:
62
 
63
  - **💻 Basic Code Examples**: Generate simple code snippets for common tasks
64
 
65
- ## 📥 Using Erynn
66
-
67
- The model works best with simple prompt formats. Here's how to use it:
68
-
69
- ```python
70
- import torch
71
- from transformers import AutoTokenizer, AutoModelForCausalLM
72
-
73
- # Model paths
74
- MODEL_PATH = "erynn/erynn-model"
75
-
76
- def load_model():
77
- """Load the Erynn model and tokenizer."""
78
- # Load model with efficient memory usage
79
- model = AutoModelForCausalLM.from_pretrained(
80
- MODEL_PATH,
81
- device_map="auto",
82
- torch_dtype=torch.float16,
83
- low_cpu_mem_usage=True
84
- )
85
-
86
- # Load tokenizer
87
- tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
88
- tokenizer.pad_token = tokenizer.eos_token
89
- return model, tokenizer
90
-
91
- def get_response(model, tokenizer, instruction, context=None):
92
- """
93
- Generate a response for the given instruction and optional context.
94
- Example: get_response(model, tokenizer, "Write an ad for a phone")
95
- """
96
- # Build simple prompt
97
- prompt = f"Instruction: {instruction}\n"
98
- if context and context.strip():
99
- prompt += f"Context: {context}\n"
100
- prompt += "Response: "
101
-
102
- # Tokenize input
103
- inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
104
-
105
- # Generate response
106
- with torch.no_grad():
107
- output = model.generate(
108
- input_ids=inputs["input_ids"],
109
- attention_mask=inputs["attention_mask"],
110
- max_new_tokens=100,
111
- temperature=0.7,
112
- top_p=0.9,
113
- repetition_penalty=1.2,
114
- do_sample=True,
115
- pad_token_id=tokenizer.eos_token_id
116
- )
117
-
118
- # Extract response
119
- response = tokenizer.decode(output[0], skip_special_tokens=True)
120
- response_start = response.find("Response: ") + len("Response: ")
121
- return response[response_start:].strip()
122
 
123
  ## 📊 Performance Examples
124
 
@@ -146,9 +89,9 @@ Response:
146
 
147
  Thanks to advanced quantization techniques, Erynn runs efficiently on standard hardware:
148
 
149
- - **GPU**: NVIDIA GPU with 4GB+ VRAM (tested on RTX 3050 Ti 4GB)
150
- - **CPU**: Any modern multi-core processor (Intel i7 12700H or equivalent recommended)
151
- - **RAM**: 8GB+ system RAM recommended
152
 
153
  ## 🛠️ Limitations
154
 
 
1
  ---
2
  language:
3
+ - en
4
  tags:
5
  - instruction-tuning
6
  - text-generation
 
62
 
63
  - **💻 Basic Code Examples**: Generate simple code snippets for common tasks
64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
 
66
  ## 📊 Performance Examples
67
 
 
89
 
90
  Thanks to advanced quantization techniques, Erynn runs efficiently on standard hardware:
91
 
92
+ - **GPU**: NVIDIA GPU RTX 3050 4GB VRAM
93
+ - **CPU**: Intel i7 12700H
94
+ - **RAM**: 16GB
95
 
96
  ## 🛠️ Limitations
97