Update model card with comprehensive documentation
Browse files
README.md
CHANGED
@@ -1,199 +1,307 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
|
|
|
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
- **
|
22 |
-
- **
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
|
199 |
-
|
|
|
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
base_model: MCG-NJU/videomae-base
|
4 |
+
tags:
|
5 |
+
- video-classification
|
6 |
+
- crime-detection
|
7 |
+
- violence-detection
|
8 |
+
- videomae
|
9 |
+
- computer-vision
|
10 |
+
- security
|
11 |
+
- surveillance
|
12 |
+
- generated_from_trainer
|
13 |
+
language:
|
14 |
+
- en
|
15 |
+
datasets:
|
16 |
+
- jinmang2/ucf_crime
|
17 |
+
metrics:
|
18 |
+
- accuracy
|
19 |
+
- precision
|
20 |
+
- recall
|
21 |
+
- f1
|
22 |
+
pipeline_tag: video-classification
|
23 |
+
model-index:
|
24 |
+
- name: test-upload-model
|
25 |
+
results:
|
26 |
+
- task:
|
27 |
+
name: Violence Detection
|
28 |
+
type: video-classification
|
29 |
+
dataset:
|
30 |
+
name: UCF Crime Dataset (Subset)
|
31 |
+
type: jinmang2/ucf_crime
|
32 |
+
args: violence_detection
|
33 |
+
metrics:
|
34 |
+
- name: Accuracy
|
35 |
+
type: accuracy
|
36 |
+
value: 0.5000
|
37 |
+
- name: Precision
|
38 |
+
type: precision
|
39 |
+
value: 0.2500
|
40 |
+
- name: Recall
|
41 |
+
type: recall
|
42 |
+
value: 0.5000
|
43 |
+
- name: F1
|
44 |
+
type: f1
|
45 |
+
value: 0.3333
|
46 |
---
|
47 |
|
48 |
+
# Nikeytas/Test Upload Model
|
49 |
|
50 |
+
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on the UCF Crime dataset with **event-based binary classification**. It achieves the following results on the evaluation set:
|
51 |
|
52 |
+
- **Loss**: 0.5847
|
53 |
+
- **Accuracy**: 0.5000
|
54 |
+
- **Precision**: 0.2500
|
55 |
+
- **Recall**: 0.5000
|
56 |
+
- **F1 Score**: 0.3333
|
57 |
|
58 |
+
## 🎯 Model Overview
|
59 |
|
60 |
+
This VideoMAE model has been fine-tuned for **binary violence detection** in video content. The model classifies videos into two categories:
|
61 |
+
- **Violent Crime** (1): Videos containing violent criminal activities
|
62 |
+
- **Non-Violent Incident** (0): Videos with non-violent or normal activities
|
63 |
|
64 |
+
The model is based on the **VideoMAE architecture** and has been specifically trained on a curated subset of the UCF Crime dataset with event-based categorization for realistic crime detection scenarios.
|
65 |
|
66 |
+
## 📊 Dataset & Training
|
67 |
|
68 |
+
### Dataset Composition
|
69 |
|
70 |
+
**Total Videos**: 20
|
71 |
+
- **Violent Crime Videos**: 10
|
72 |
+
- **Non-Violent Incident Videos**: 10
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
**Class Balance**: 50.0% violent crimes
|
75 |
+
|
76 |
+
**Event Distribution**:
|
77 |
+
- **Arrest**: 20 videos
|
78 |
+
- **Arson**: 20 videos
|
79 |
+
|
80 |
+
**Data Splits**:
|
81 |
+
- **Training**: 12 videos
|
82 |
+
- **Validation**: 4 videos
|
83 |
+
- **Test**: 4 videos
|
84 |
+
|
85 |
+
## 🎯 Performance
|
86 |
+
|
87 |
+
### Performance Metrics
|
88 |
+
|
89 |
+
**Validation Performance**:
|
90 |
+
- **eval_loss**: 0.5847
|
91 |
+
- **eval_accuracy**: 0.5000
|
92 |
+
- **eval_precision**: 0.2500
|
93 |
+
- **eval_recall**: 0.5000
|
94 |
+
- **eval_f1**: 0.3333
|
95 |
+
- **eval_runtime**: 0.6636
|
96 |
+
- **eval_samples_per_second**: 6.0270
|
97 |
+
- **eval_steps_per_second**: 3.0140
|
98 |
+
- **epoch**: 1.0000
|
99 |
+
|
100 |
+
**Test Performance**:
|
101 |
+
- **eval_loss**: 0.6700
|
102 |
+
- **eval_accuracy**: 0.5000
|
103 |
+
- **eval_precision**: 0.2500
|
104 |
+
- **eval_recall**: 0.5000
|
105 |
+
- **eval_f1**: 0.3333
|
106 |
+
- **eval_runtime**: 0.4271
|
107 |
+
- **eval_samples_per_second**: 9.3660
|
108 |
+
- **eval_steps_per_second**: 4.6830
|
109 |
+
- **epoch**: 1.0000
|
110 |
+
|
111 |
+
**Training Information**:
|
112 |
+
- **Training Time**: 0.1 minutes
|
113 |
+
- **Best Accuracy Achieved**: 0.5000
|
114 |
+
- **Model Architecture**: VideoMAE Base (fine-tuned)
|
115 |
+
- **Fine-tuning Approach**: Event-based binary classification
|
116 |
+
|
117 |
+
## 🚀 Training Procedure
|
118 |
+
|
119 |
+
### Training Hyperparameters
|
120 |
+
|
121 |
+
The following hyperparameters were used during training:
|
122 |
+
- **Learning Rate**: 5e-05
|
123 |
+
- **Train Batch Size**: 2
|
124 |
+
- **Eval Batch Size**: 2
|
125 |
+
- **Optimizer**: AdamW with betas=(0.9,0.999) and epsilon=1e-08
|
126 |
+
- **LR Scheduler Type**: Linear
|
127 |
+
- **Training Epochs**: 1
|
128 |
+
- **Weight Decay**: 0.01
|
129 |
+
|
130 |
+
### Training Results
|
131 |
+
|
132 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
133 |
+
|---------------|-------|------|-----------------|----------|
|
134 |
+
| 0.5 | 1.00 | N/A | 0.5847 | 0.5000 |
|
135 |
+
|
136 |
+
### Framework Versions
|
137 |
+
|
138 |
+
- **Transformers**: 4.30.2+
|
139 |
+
- **PyTorch**: 2.0.1+
|
140 |
+
- **Datasets**: Latest
|
141 |
+
- **Device**: Apple Silicon MPS / CUDA / CPU (Auto-detected)
|
142 |
+
|
143 |
+
## 🚀 Quick Start
|
144 |
+
|
145 |
+
### Installation
|
146 |
+
|
147 |
+
```bash
|
148 |
+
pip install transformers torch torchvision opencv-python pillow
|
149 |
+
```
|
150 |
+
|
151 |
+
### Basic Usage
|
152 |
+
|
153 |
+
```python
|
154 |
+
import torch
|
155 |
+
from transformers import AutoModelForVideoClassification, AutoProcessor
|
156 |
+
import cv2
|
157 |
+
import numpy as np
|
158 |
+
|
159 |
+
# Load model and processor
|
160 |
+
model = AutoModelForVideoClassification.from_pretrained("Nikeytas/test-upload-model")
|
161 |
+
processor = AutoProcessor.from_pretrained("Nikeytas/test-upload-model")
|
162 |
+
|
163 |
+
# Process video
|
164 |
+
def classify_video(video_path, num_frames=16):
|
165 |
+
# Extract frames
|
166 |
+
cap = cv2.VideoCapture(video_path)
|
167 |
+
frames = []
|
168 |
+
|
169 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
170 |
+
indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
|
171 |
+
|
172 |
+
for idx in indices:
|
173 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
|
174 |
+
ret, frame = cap.read()
|
175 |
+
if ret:
|
176 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
177 |
+
frames.append(frame_rgb)
|
178 |
+
|
179 |
+
cap.release()
|
180 |
+
|
181 |
+
# Process with model
|
182 |
+
inputs = processor(frames, return_tensors="pt")
|
183 |
+
|
184 |
+
with torch.no_grad():
|
185 |
+
outputs = model(**inputs)
|
186 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
187 |
+
predicted_class = torch.argmax(predictions, dim=-1).item()
|
188 |
+
confidence = predictions[0][predicted_class].item()
|
189 |
+
|
190 |
+
label = "Violent Crime" if predicted_class == 1 else "Non-Violent"
|
191 |
+
return label, confidence
|
192 |
+
|
193 |
+
# Example usage
|
194 |
+
video_path = "path/to/your/video.mp4"
|
195 |
+
prediction, confidence = classify_video(video_path)
|
196 |
+
print(f"Prediction: {prediction} (Confidence: {confidence:.3f})")
|
197 |
+
```
|
198 |
+
|
199 |
+
### Batch Processing
|
200 |
+
|
201 |
+
```python
|
202 |
+
import os
|
203 |
+
from pathlib import Path
|
204 |
+
|
205 |
+
def process_video_directory(video_dir, output_file="results.txt"):
|
206 |
+
results = []
|
207 |
+
|
208 |
+
for video_file in Path(video_dir).glob("*.mp4"):
|
209 |
+
try:
|
210 |
+
prediction, confidence = classify_video(str(video_file))
|
211 |
+
results.append({
|
212 |
+
"file": video_file.name,
|
213 |
+
"prediction": prediction,
|
214 |
+
"confidence": confidence
|
215 |
+
})
|
216 |
+
print(f"✅ {video_file.name}: {prediction} ({confidence:.3f})")
|
217 |
+
except Exception as e:
|
218 |
+
print(f"❌ Error processing {video_file.name}: {e}")
|
219 |
+
|
220 |
+
# Save results
|
221 |
+
with open(output_file, "w") as f:
|
222 |
+
for result in results:
|
223 |
+
f.write(f"{result['file']}: {result['prediction']} ({result['confidence']:.3f})\n")
|
224 |
+
|
225 |
+
return results
|
226 |
+
|
227 |
+
# Process all videos in a directory
|
228 |
+
results = process_video_directory("./videos/")
|
229 |
+
```
|
230 |
+
|
231 |
+
## 📈 Technical Specifications
|
232 |
+
|
233 |
+
- **Base Model**: MCG-NJU/videomae-base
|
234 |
+
- **Architecture**: Vision Transformer (ViT) adapted for video
|
235 |
+
- **Input Resolution**: 224x224 pixels per frame
|
236 |
+
- **Temporal Resolution**: 16 frames per video clip
|
237 |
+
- **Output Classes**: 2 (Binary classification)
|
238 |
+
- **Training Framework**: HuggingFace Transformers
|
239 |
+
- **Optimization**: AdamW optimizer with learning rate 5e-5
|
240 |
+
|
241 |
+
## ⚠️ Limitations
|
242 |
+
|
243 |
+
1. **Dataset Scope**: Trained on a subset of UCF Crime dataset - may not generalize to all types of violence
|
244 |
+
2. **Temporal Context**: Uses 16-frame clips which may miss context in longer sequences
|
245 |
+
3. **Environmental Bias**: Performance may vary with different lighting, camera angles, and video quality
|
246 |
+
4. **False Positives**: May misclassify intense but non-violent activities (sports, action movies)
|
247 |
+
5. **Real-time Performance**: Processing time depends on hardware capabilities
|
248 |
+
|
249 |
+
## 🔒 Ethical Considerations
|
250 |
+
|
251 |
+
### Intended Use
|
252 |
+
- **Primary**: Research and development in video analysis
|
253 |
+
- **Secondary**: Security system enhancement with human oversight
|
254 |
+
- **Educational**: Computer vision and AI safety research
|
255 |
+
|
256 |
+
### Prohibited Uses
|
257 |
+
- **Surveillance without consent**: Do not use for unauthorized monitoring
|
258 |
+
- **Discriminatory profiling**: Avoid bias against specific groups or communities
|
259 |
+
- **Automated punishment**: Never use for automated legal or disciplinary actions
|
260 |
+
- **Privacy violation**: Respect privacy laws and individual rights
|
261 |
+
|
262 |
+
### Bias and Fairness
|
263 |
+
- Model trained on specific dataset that may not represent all populations
|
264 |
+
- Regular evaluation needed for bias detection and mitigation
|
265 |
+
- Human oversight required for critical applications
|
266 |
+
- Consider demographic representation in deployment scenarios
|
267 |
+
|
268 |
+
## 📝 Model Card Information
|
269 |
+
|
270 |
+
- **Developed by**: Research Team
|
271 |
+
- **Model Type**: Video Classification (Binary)
|
272 |
+
- **Training Data**: UCF Crime Dataset (Subset)
|
273 |
+
- **Training Date**: 2025-06-08 15:19:08 UTC
|
274 |
+
- **Evaluation Metrics**: Accuracy, Precision, Recall, F1-Score
|
275 |
+
- **Intended Users**: Researchers, Security Professionals, Developers
|
276 |
+
|
277 |
+
## 📚 Citation
|
278 |
+
|
279 |
+
If you use this model in your research, please cite:
|
280 |
+
|
281 |
+
```bibtex
|
282 |
+
@misc{Nikeytas_test_upload_model,
|
283 |
+
title={VideoMAE Fine-tuned for Crime Detection},
|
284 |
+
author={Research Team},
|
285 |
+
year={2024},
|
286 |
+
publisher={Hugging Face},
|
287 |
+
url={https://huggingface.co/Nikeytas/test-upload-model}
|
288 |
+
}
|
289 |
+
```
|
290 |
+
|
291 |
+
## 🤝 Contributing
|
292 |
+
|
293 |
+
We welcome contributions to improve the model! Please:
|
294 |
+
1. Report issues with specific examples
|
295 |
+
2. Suggest improvements for bias reduction
|
296 |
+
3. Share evaluation results on new datasets
|
297 |
+
4. Contribute to documentation and examples
|
298 |
+
|
299 |
+
## 📞 Contact
|
300 |
+
|
301 |
+
For questions, issues, or collaboration opportunities, please open an issue in the model repository or contact the development team.
|
302 |
|
303 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
|
305 |
+
*Last updated: 2025-06-08 15:19:08 UTC*
|
306 |
+
*Model version: 1.0*
|
307 |
+
*Framework: HuggingFace Transformers*
|