File size: 7,930 Bytes
d9e6392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import pandas as pd
import joblib
import yfinance as yf
import requests
import re

# -------------------------------
# 1. Load Models & Encoders
# -------------------------------
try:
    stock_model = joblib.load("stock_model.joblib")
    mf_model = joblib.load("mf_model.joblib")
    encoders = joblib.load("encoders.joblib")
except FileNotFoundError as e:
    raise FileNotFoundError(
        f"Missing file: {e}. Make sure stock_model.joblib, mf_model.joblib, encoders.joblib are in this folder."
    )
except Exception as e:
    raise RuntimeError(f"Error loading models: {e}")

# Global cache for mutual fund data
_mf_data = None


# -------------------------------
# 2. Helper Functions
# -------------------------------

def get_stock_price(ticker):
    """Fetch latest closing price using Yahoo Finance."""
    try:
        stock = yf.Ticker(ticker)
        hist = stock.history(period="5d")
        if not hist.empty:
            return round(hist['Close'].iloc[-1], 2)
        return None
    except Exception as e:
        print(f"⚠ Error fetching {ticker}: {e}")
        return None


def fetch_mf_data():
    """Fetch and cache all mutual funds from https://api.mfapi.in/mf"""
    global _mf_data
    if _mf_data is not None:
        return _mf_data

    url = "https://api.mfapi.in/mf"
    try:
        print("πŸ” Fetching mutual fund data from api.mfapi.in...")
        response = requests.get(url, timeout=15)
        response.raise_for_status()
        data = response.json()
        print(f"βœ… Fetched {len(data)} mutual funds")
        _mf_data = data
        return data
    except Exception as e:
        print(f"❌ Failed to fetch mutual fund data: {e}")
        return []


def clean_scheme_name(name):
    """Remove plan types and options for cleaner display."""
    name = re.sub(r" - (Regular|Direct) Plan.*", "", name)
    name = re.sub(r" -.*Option", "", name)
    name = re.sub(r" \(.*\)", "", name)
    name = re.sub(r"\s+", " ", name).strip()
    return name


def get_nav(fund):
    """Safely extract NAV from fund data."""
    try:
        nav_str = fund["data"][0]["nav"]
        return float(nav_str)
    except (IndexError, KeyError, ValueError, TypeError):
        return None
    
def fetch_fund_details(scheme_code):
    """Fetch NAV details for a given schemeCode."""
    try:
        url = f"https://api.mfapi.in/mf/{scheme_code}"
        response = requests.get(url, timeout=10)
        response.raise_for_status()
        return response.json()
    except Exception as e:
        print(f"⚠ Failed to fetch details for {scheme_code}: {e}")
        return None


def get_nav_from_details(fund_details):
    """Extract latest NAV from scheme details."""
    try:
        nav_str = fund_details["data"][0]["nav"]
        return float(nav_str)
    except (IndexError, KeyError, ValueError, TypeError):
        return None


def search_mf_by_category(category):
    """
    Search mutual funds by category using keyword matching.
    Returns: dict of {clean_scheme_name: nav}
    """
    funds = fetch_mf_data()
    if not funds:
        return {}

    # Refined mapping
    keyword_map = {
        "ELSS": r"(tax.?saver|elss|long.?term.?equity|tax.?plan)",
        "Debt": r"(debt|income|gilt|bond|savings|credit.?risk|short.?term|corporate.?debt|liquid|money.?market|fixed.?maturity)",
        "Equity": r"(equity|flexi.?cap|flexicap|large.?cap|mid.?cap|small.?cap|multi.?cap|focused.?fund|blue.?chip)",
        "Hybrid": r"(hybrid|balanced|advantage|aggressive|conservative|arbitrage|asset.?allocator|dynamic.?asset)",
        "Index": r"(index|nifty|sensex|passive|bees|exchange.?traded|etf)"
    }

    pattern = keyword_map.get(category, category)
    results = {}

    for fund in funds:
        name = fund["schemeName"].lower()

        # Skip if no keyword match
        if not re.search(pattern, name, re.I):
            continue

        # Skip IDCW/Dividend/Bonus/FMP
        if any(x in name for x in ["dividend", "idcw", "bonus", "fmp"]):
            continue

        # Fetch NAV
        details = fetch_fund_details(fund["schemeCode"])
        if not details:
            continue
        nav = get_nav_from_details(details)
        if not nav:
            continue

        clean_name = clean_scheme_name(fund["schemeName"])
        if clean_name not in results:
            results[clean_name] = round(nav, 2)

        if len(results) >= 3:  # Limit to 3
            break

    return results



# -------------------------------
# 3. Stock Category β†’ Tickers
# -------------------------------

STOCK_CATEGORY_TO_TICKERS = {
    "Small-Cap": ["IRCTC.NS", "JIOFIN.NS", "POLICYBZR.NS", "NAUKRI.NS", "AUBANK.NS"],
    "Growth": ["RELIANCE.NS", "TCS.NS", "INFY.NS", "DMART.NS", "HDFCBANK.NS"],
    "Index": ["NIFTYBEES.NS", "BANKBEES.NS", "ICICIB22.NS", "MOM100.NS", "GOLDBEES.NS"],
    "Value": ["HINDALCO.NS", "TATASTEEL.NS", "COALINDIA.NS", "NTPC.NS", "POWERGRID.NS"],
    "Dividend": ["SBIN.NS", "AXISBANK.NS", "BPCL.NS", "VEDL.NS", "GAIL.NS"],
    "Blend": ["ITC.NS", "NESTLEIND.NS", "BRITANNIA.NS", "CIPLA.NS", "HDFC.NS"]
}


# -------------------------------
# 4. Main Recommendation Function
# -------------------------------

def recommend_investment(user_input):
    """
    user_input = {
        "risk": "Aggressive",
        "horizon": "Long-term",
        "investment_amount": 100000
    }
    """
    required = ["risk", "horizon", "investment_amount"]
    for k in required:
        if k not in user_input:
            raise ValueError(f"Missing input: {k}")

    risk = str(user_input["risk"]).strip().capitalize()
    horizon = str(user_input["horizon"]).strip().capitalize()

    # Validate and encode
    try:
        risk_enc = encoders["risk"].transform([risk])[0]
        horizon_enc = encoders["horizon"].transform([horizon])[0]
    except ValueError:
        available_risks = list(encoders["risk"].classes_)
        available_horizons = list(encoders["horizon"].classes_)
        raise ValueError(
            f"Invalid risk/horizon. Use:\n"
            f"  risk: {available_risks}\n"
            f"  horizon: {available_horizons}"
        )

    # Prepare input
    X = pd.DataFrame([{
        "risk_profile_enc": risk_enc,
        "investment_horizon_enc": horizon_enc,
        "investment_amount": float(user_input["investment_amount"])
    }])

    # Predict
    try:
        stock_pred = stock_model.predict(X)[0]
        mf_pred = mf_model.predict(X)[0]

        stock_category = encoders["stock"].inverse_transform([stock_pred])[0]
        mf_category = encoders["mf"].inverse_transform([mf_pred])[0]
    except Exception as e:
        raise RuntimeError(f"Prediction failed: {e}")

    # Get stocks
    tickers = STOCK_CATEGORY_TO_TICKERS.get(stock_category, [])
    stocks = {}
    for ticker in tickers:
        price = get_stock_price(ticker)
        if price is not None:
            stocks[ticker] = price

    # Get mutual funds
    mfs = search_mf_by_category(mf_category)

    return {
        "Predicted Stock Category": stock_category,
        "Predicted MF Category": mf_category,
        "Recommended Stocks": stocks,
        "Recommended Mutual Funds": mfs
    }


# -------------------------------
# 5. Example Usage
# -------------------------------

if __name__ == "__main__":
    # Example user input
    user = {
        "risk": "Aggressive",
        "horizon": "Long-term",
        "investment_amount": 10000
    }

    print("πŸš€ Investment Recommendation System\n")
    try:
        result = recommend_investment(user)
        print("βœ… Recommendation Generated:\n")
        for key, value in result.items():
            print(f"πŸ“Œ {key}:")
            if isinstance(value, dict):
                for k, v in value.items():
                    print(f"   β€’ {k} : β‚Ή{v}")
            else:
                print(f"   {value}")
            print()
    except Exception as e:
        print(f"πŸ’₯ Error: {e}")