Commit
·
a2f1254
1
Parent(s):
67e342a
Delete modeling_mixformer_sequential.py
Browse files- modeling_mixformer_sequential.py +0 -935
modeling_mixformer_sequential.py
DELETED
|
@@ -1,935 +0,0 @@
|
|
| 1 |
-
# Copyright (c) Microsoft Corporation.
|
| 2 |
-
# Licensed under the MIT license.
|
| 3 |
-
#
|
| 4 |
-
# BSD 3-Clause License
|
| 5 |
-
#
|
| 6 |
-
# Copyright (c) 2022, Tri Dao, [email protected].
|
| 7 |
-
# All rights reserved.
|
| 8 |
-
#
|
| 9 |
-
# Redistribution and use in source and binary forms, with or without
|
| 10 |
-
# modification, are permitted provided that the following conditions are met:
|
| 11 |
-
#
|
| 12 |
-
# * Redistributions of source code must retain the above copyright notice, this
|
| 13 |
-
# list of conditions and the following disclaimer.
|
| 14 |
-
#
|
| 15 |
-
# * Redistributions in binary form must reproduce the above copyright notice,
|
| 16 |
-
# this list of conditions and the following disclaimer in the documentation
|
| 17 |
-
# and/or other materials provided with the distribution.
|
| 18 |
-
#
|
| 19 |
-
# * Neither the name of the copyright holder nor the names of its
|
| 20 |
-
# contributors may be used to endorse or promote products derived from
|
| 21 |
-
# this software without specific prior written permission.
|
| 22 |
-
#
|
| 23 |
-
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
| 24 |
-
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| 25 |
-
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
| 26 |
-
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
| 27 |
-
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
| 28 |
-
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
| 29 |
-
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
| 30 |
-
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
| 31 |
-
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| 32 |
-
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| 33 |
-
|
| 34 |
-
from __future__ import annotations
|
| 35 |
-
|
| 36 |
-
import math
|
| 37 |
-
from typing import Any, Dict, Optional, Tuple, Union
|
| 38 |
-
from dataclasses import dataclass, field
|
| 39 |
-
|
| 40 |
-
import torch
|
| 41 |
-
import torch.nn as nn
|
| 42 |
-
|
| 43 |
-
from einops import rearrange, repeat
|
| 44 |
-
from transformers.activations import ACT2FN
|
| 45 |
-
from transformers import PretrainedConfig, PreTrainedModel
|
| 46 |
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 47 |
-
|
| 48 |
-
from .configuration_mixformer_sequential import MixFormerSequentialConfig
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
try:
|
| 52 |
-
from flash_attn.bert_padding import pad_input, unpad_input
|
| 53 |
-
from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding
|
| 54 |
-
from flash_attn.modules.mha import FlashCrossAttention, FlashSelfAttention
|
| 55 |
-
from flash_attn.ops.fused_dense import FusedDense
|
| 56 |
-
except:
|
| 57 |
-
pad_input, unpad_input = None, None
|
| 58 |
-
FlashRotaryEmbedding = None
|
| 59 |
-
FlashSelfAttention, FlashCrossAttention = None, None
|
| 60 |
-
FusedDense = None
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
@dataclass
|
| 64 |
-
class InferenceParams:
|
| 65 |
-
"""Inference parameters passed to model to efficiently calculate
|
| 66 |
-
and store context during inference.
|
| 67 |
-
|
| 68 |
-
Reference:
|
| 69 |
-
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py.
|
| 70 |
-
|
| 71 |
-
Args:
|
| 72 |
-
max_seqlen: Maximum sequence length.
|
| 73 |
-
max_batch_size: Maximum batch size.
|
| 74 |
-
seqlen_offset: Sequence length offset.
|
| 75 |
-
batch_size_offset: Batch size offset.
|
| 76 |
-
key_value_memory_dict: Key value memory dictionary.
|
| 77 |
-
lengths_per_sample: Lengths per sample.
|
| 78 |
-
|
| 79 |
-
"""
|
| 80 |
-
|
| 81 |
-
max_seqlen: int = field(metadata={"help": "Maximum sequence length."})
|
| 82 |
-
|
| 83 |
-
max_batch_size: int = field(metadata={"help": "Maximum batch size."})
|
| 84 |
-
|
| 85 |
-
seqlen_offset: int = field(default=0, metadata={"help": "Sequence length offset."})
|
| 86 |
-
|
| 87 |
-
batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."})
|
| 88 |
-
|
| 89 |
-
key_value_memory_dict: Dict[str, Any] = field(
|
| 90 |
-
default_factory=dict, metadata={"help": "Key value memory dictionary."}
|
| 91 |
-
)
|
| 92 |
-
|
| 93 |
-
lengths_per_sample: torch.Tensor = field(default=None, metadata={"help": "Lengths per sample."})
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
class Embedding(nn.Module):
|
| 97 |
-
"""Token embedding with dropout."""
|
| 98 |
-
|
| 99 |
-
def __init__(self, config: PretrainedConfig) -> None:
|
| 100 |
-
super().__init__()
|
| 101 |
-
|
| 102 |
-
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
|
| 103 |
-
self.drop = nn.Dropout(config.embd_pdrop)
|
| 104 |
-
|
| 105 |
-
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
|
| 106 |
-
input_shape = input_ids.size()
|
| 107 |
-
input_ids = input_ids.view(-1, input_shape[-1])
|
| 108 |
-
|
| 109 |
-
hidden_states = self.wte(input_ids)
|
| 110 |
-
hidden_states = self.drop(hidden_states)
|
| 111 |
-
|
| 112 |
-
return hidden_states
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
def _apply_rotary_emb(
|
| 116 |
-
x: torch.FloatTensor,
|
| 117 |
-
cos: torch.FloatTensor,
|
| 118 |
-
sin: torch.FloatTensor,
|
| 119 |
-
) -> torch.FloatTensor:
|
| 120 |
-
_, seqlen, _, head_dim = x.shape
|
| 121 |
-
rotary_seqlen, rotary_dim = cos.shape
|
| 122 |
-
rotary_dim *= 2
|
| 123 |
-
|
| 124 |
-
assert rotary_dim <= head_dim
|
| 125 |
-
assert seqlen <= rotary_seqlen
|
| 126 |
-
assert cos.shape == sin.shape == (rotary_seqlen, rotary_dim // 2)
|
| 127 |
-
|
| 128 |
-
x_rot = x[:, :, :, :rotary_dim]
|
| 129 |
-
x_pass = x[:, :, :, rotary_dim:]
|
| 130 |
-
|
| 131 |
-
x1, x2 = x_rot.chunk(2, dim=-1)
|
| 132 |
-
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
|
| 133 |
-
x1, x2, c, s = [t.to(dtype=torch.float32) for t in [x1, x2, c, s]]
|
| 134 |
-
|
| 135 |
-
x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], axis=-1).to(x.dtype)
|
| 136 |
-
|
| 137 |
-
return torch.cat([x_rot, x_pass], axis=-1)
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
def _apply_rotary_emb_kv(
|
| 141 |
-
kv: torch.FloatTensor,
|
| 142 |
-
cos: torch.FloatTensor,
|
| 143 |
-
sin: torch.FloatTensor,
|
| 144 |
-
cos_k: Optional[torch.FloatTensor] = None,
|
| 145 |
-
sin_k: Optional[torch.FloatTensor] = None,
|
| 146 |
-
) -> torch.FloatTensor:
|
| 147 |
-
_, seqlen, two, _, head_dim = kv.shape
|
| 148 |
-
assert two == 2
|
| 149 |
-
|
| 150 |
-
rotary_seqlen, rotary_dim = cos.shape
|
| 151 |
-
rotary_dim *= 2
|
| 152 |
-
assert rotary_dim <= head_dim
|
| 153 |
-
assert seqlen <= rotary_seqlen
|
| 154 |
-
assert cos.shape == sin.shape == (rotary_seqlen, rotary_dim // 2)
|
| 155 |
-
|
| 156 |
-
k_rot = kv[:, :, 0, :, :rotary_dim]
|
| 157 |
-
k_pass = kv[:, :, 0, :, rotary_dim:]
|
| 158 |
-
|
| 159 |
-
k1, k2 = k_rot.chunk(2, dim=-1)
|
| 160 |
-
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
|
| 161 |
-
k1, k2, c, s = [t.to(dtype=torch.float32) for t in [k1, k2, c, s]]
|
| 162 |
-
|
| 163 |
-
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(kv.dtype)
|
| 164 |
-
|
| 165 |
-
return torch.cat(
|
| 166 |
-
[
|
| 167 |
-
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
|
| 168 |
-
kv[:, :, 1:2, :, :],
|
| 169 |
-
],
|
| 170 |
-
axis=2,
|
| 171 |
-
)
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
def _apply_rotary_emb_qkv(
|
| 175 |
-
qkv: torch.FloatTensor,
|
| 176 |
-
cos: torch.FloatTensor,
|
| 177 |
-
sin: torch.FloatTensor,
|
| 178 |
-
cos_k: Optional[torch.FloatTensor] = None,
|
| 179 |
-
sin_k: Optional[torch.FloatTensor] = None,
|
| 180 |
-
) -> torch.FloatTensor:
|
| 181 |
-
_, seqlen, three, _, head_dim = qkv.shape
|
| 182 |
-
assert three == 3
|
| 183 |
-
|
| 184 |
-
rotary_seqlen, rotary_dim = cos.shape
|
| 185 |
-
rotary_dim *= 2
|
| 186 |
-
assert rotary_dim <= head_dim
|
| 187 |
-
assert seqlen <= rotary_seqlen
|
| 188 |
-
assert cos.shape == sin.shape == (rotary_seqlen, rotary_dim // 2)
|
| 189 |
-
|
| 190 |
-
q_rot = qkv[:, :, 0, :, :rotary_dim]
|
| 191 |
-
q_pass = qkv[:, :, 0, :, rotary_dim:]
|
| 192 |
-
|
| 193 |
-
k_rot = qkv[:, :, 1, :, :rotary_dim]
|
| 194 |
-
k_pass = qkv[:, :, 1, :, rotary_dim:]
|
| 195 |
-
|
| 196 |
-
q1, q2 = q_rot.chunk(2, dim=-1)
|
| 197 |
-
k1, k2 = k_rot.chunk(2, dim=-1)
|
| 198 |
-
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
|
| 199 |
-
q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]]
|
| 200 |
-
|
| 201 |
-
q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
|
| 202 |
-
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
|
| 203 |
-
|
| 204 |
-
return torch.cat(
|
| 205 |
-
[
|
| 206 |
-
torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
|
| 207 |
-
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
|
| 208 |
-
qkv[:, :, 2:3, :, :],
|
| 209 |
-
],
|
| 210 |
-
axis=2,
|
| 211 |
-
)
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
class RotaryEmbedding(nn.Module):
|
| 215 |
-
"""Rotary positional embedding (RoPE).
|
| 216 |
-
|
| 217 |
-
Reference:
|
| 218 |
-
RoFormer: Enhanced Transformer with Rotary Position Embedding.
|
| 219 |
-
https://arxiv.org/pdf/2104.09864.pdf.
|
| 220 |
-
|
| 221 |
-
"""
|
| 222 |
-
|
| 223 |
-
def __init__(
|
| 224 |
-
self,
|
| 225 |
-
dim: int,
|
| 226 |
-
base: int = 10000,
|
| 227 |
-
scale_base: Optional[float] = None,
|
| 228 |
-
pos_idx_in_fp32: bool = True,
|
| 229 |
-
device: Optional[str] = None,
|
| 230 |
-
**kwargs,
|
| 231 |
-
) -> None:
|
| 232 |
-
super().__init__()
|
| 233 |
-
|
| 234 |
-
if scale_base is not None:
|
| 235 |
-
raise NotImplementedError
|
| 236 |
-
|
| 237 |
-
self.dim = dim
|
| 238 |
-
self.base = float(base)
|
| 239 |
-
self.scale_base = scale_base
|
| 240 |
-
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
| 241 |
-
self.device = device
|
| 242 |
-
|
| 243 |
-
# Generate and save the inverse frequency buffer (non-trainable)
|
| 244 |
-
inv_freq = self._compute_inv_freq(device)
|
| 245 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 246 |
-
|
| 247 |
-
# Generate and save the scale buffer (non-trainable)
|
| 248 |
-
scale = (
|
| 249 |
-
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
| 250 |
-
if scale_base is not None
|
| 251 |
-
else None
|
| 252 |
-
)
|
| 253 |
-
self.register_buffer("scale", scale, persistent=False)
|
| 254 |
-
|
| 255 |
-
self._seq_len_cached = 0
|
| 256 |
-
self._cos_cached = None
|
| 257 |
-
self._sin_cached = None
|
| 258 |
-
self._cos_k_cached = None
|
| 259 |
-
self._sin_k_cached = None
|
| 260 |
-
|
| 261 |
-
def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor:
|
| 262 |
-
return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
| 263 |
-
|
| 264 |
-
def _update_cos_sin_cache(
|
| 265 |
-
self, seqlen: int, device: Optional[str] = None, dtype: Optional[torch.dtype] = None
|
| 266 |
-
) -> None:
|
| 267 |
-
# Reset the tables if sequence length has been chaned, if we are on a
|
| 268 |
-
# new device or if we are switching from inference mode to training
|
| 269 |
-
if (
|
| 270 |
-
seqlen > self._seq_len_cached
|
| 271 |
-
or self._cos_cached is None
|
| 272 |
-
or self._cos_cached.device != device
|
| 273 |
-
or self._cos_cached.dtype != dtype
|
| 274 |
-
or (self.training and self._cos_cached.is_inference())
|
| 275 |
-
):
|
| 276 |
-
self._seq_len_cached = seqlen
|
| 277 |
-
|
| 278 |
-
# fp32 is preferred since the output of `torch.arange` can be quite large
|
| 279 |
-
# and bf16 would lose a lot of precision
|
| 280 |
-
if self.pos_idx_in_fp32:
|
| 281 |
-
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
| 282 |
-
if self.inv_freq.dtype != torch.float32:
|
| 283 |
-
inv_freq = self._compute_inv_freq(device=device)
|
| 284 |
-
else:
|
| 285 |
-
inv_freq = self.inv_freq
|
| 286 |
-
else:
|
| 287 |
-
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
| 288 |
-
inv_freq = self.inv_freq
|
| 289 |
-
|
| 290 |
-
# `torch.outer` is preferred since `torch.einsum` converts from fp32 to fp16 if used with AMP
|
| 291 |
-
freqs = torch.outer(t, inv_freq)
|
| 292 |
-
if self.scale is None:
|
| 293 |
-
self._cos_cached = torch.cos(freqs).to(dtype)
|
| 294 |
-
self._sin_cached = torch.sin(freqs).to(dtype)
|
| 295 |
-
else:
|
| 296 |
-
power = (
|
| 297 |
-
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
|
| 298 |
-
) / self.scale_base
|
| 299 |
-
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
| 300 |
-
|
| 301 |
-
# Force the scale multiplication to happen in fp32
|
| 302 |
-
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
| 303 |
-
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
| 304 |
-
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
| 305 |
-
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
| 306 |
-
|
| 307 |
-
def forward(
|
| 308 |
-
self,
|
| 309 |
-
qkv: torch.Tensor,
|
| 310 |
-
kv: Optional[torch.Tensor] = None,
|
| 311 |
-
seqlen_offset: int = 0,
|
| 312 |
-
max_seqlen: Optional[int] = None,
|
| 313 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 314 |
-
seqlen = qkv.shape[1]
|
| 315 |
-
|
| 316 |
-
if max_seqlen is not None:
|
| 317 |
-
self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
|
| 318 |
-
else:
|
| 319 |
-
self._update_cos_sin_cache(seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
|
| 320 |
-
|
| 321 |
-
if kv is None:
|
| 322 |
-
return _apply_rotary_emb_qkv(qkv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:])
|
| 323 |
-
else:
|
| 324 |
-
q = _apply_rotary_emb(qkv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:])
|
| 325 |
-
kv = _apply_rotary_emb_kv(kv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:])
|
| 326 |
-
|
| 327 |
-
return q, kv
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
class MLP(nn.Module):
|
| 331 |
-
"""Multi-Layer Perceptron.
|
| 332 |
-
|
| 333 |
-
Reference:
|
| 334 |
-
Attention Is All You Need.
|
| 335 |
-
https://arxiv.org/pdf/1706.03762.pdf.
|
| 336 |
-
|
| 337 |
-
"""
|
| 338 |
-
|
| 339 |
-
def __init__(self, config: PretrainedConfig, n_inner: Optional[int] = None, act_fn: Optional[str] = None) -> None:
|
| 340 |
-
super().__init__()
|
| 341 |
-
|
| 342 |
-
act_fn = config.activation_function if act_fn is None else act_fn
|
| 343 |
-
assert act_fn in ACT2FN.keys(), f"`act_fn` must be one of: {ACT2FN.keys()}."
|
| 344 |
-
|
| 345 |
-
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
|
| 346 |
-
n_inner = n_inner if n_inner is not None else 4 * config.n_embd
|
| 347 |
-
|
| 348 |
-
self.fc1 = nn.Linear(config.n_embd, n_inner)
|
| 349 |
-
self.fc2 = nn.Linear(n_inner, config.n_embd)
|
| 350 |
-
self.act = ACT2FN[act_fn]
|
| 351 |
-
|
| 352 |
-
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
| 353 |
-
hidden_states = self.fc1(hidden_states)
|
| 354 |
-
hidden_states = self.act(hidden_states)
|
| 355 |
-
hidden_states = self.fc2(hidden_states)
|
| 356 |
-
|
| 357 |
-
return hidden_states
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
class SelfAttention(nn.Module):
|
| 361 |
-
"""Self-attention layer (compatible with PyTorch).
|
| 362 |
-
Reference:
|
| 363 |
-
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
|
| 364 |
-
"""
|
| 365 |
-
|
| 366 |
-
def __init__(
|
| 367 |
-
self,
|
| 368 |
-
causal: bool = True,
|
| 369 |
-
softmax_scale: Optional[float] = None,
|
| 370 |
-
attention_dropout: float = 0.0,
|
| 371 |
-
) -> None:
|
| 372 |
-
super().__init__()
|
| 373 |
-
|
| 374 |
-
self.causal = causal
|
| 375 |
-
self.softmax_scale = softmax_scale
|
| 376 |
-
self.drop = nn.Dropout(attention_dropout)
|
| 377 |
-
|
| 378 |
-
def forward(
|
| 379 |
-
self,
|
| 380 |
-
qkv: torch.FloatTensor,
|
| 381 |
-
causal: bool = None,
|
| 382 |
-
key_padding_mask: Optional[torch.BoolTensor] = None,
|
| 383 |
-
**kwargs,
|
| 384 |
-
) -> torch.FloatTensor:
|
| 385 |
-
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
|
| 386 |
-
q, k, v = qkv.unbind(dim=2)
|
| 387 |
-
|
| 388 |
-
causal = self.causal if causal is None else causal
|
| 389 |
-
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
| 390 |
-
|
| 391 |
-
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
| 392 |
-
|
| 393 |
-
if key_padding_mask is not None:
|
| 394 |
-
padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device)
|
| 395 |
-
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
| 396 |
-
|
| 397 |
-
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
| 398 |
-
|
| 399 |
-
if causal:
|
| 400 |
-
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
|
| 401 |
-
scores = scores + causal_mask.to(dtype=scores.dtype)
|
| 402 |
-
|
| 403 |
-
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
| 404 |
-
attention = self.drop(attention)
|
| 405 |
-
|
| 406 |
-
output = torch.einsum("bhts,bshd->bthd", attention, v)
|
| 407 |
-
|
| 408 |
-
return output
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
class CrossAttention(nn.Module):
|
| 412 |
-
"""Cross-attention layer (compatible with PyTorch).
|
| 413 |
-
Reference:
|
| 414 |
-
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
|
| 415 |
-
"""
|
| 416 |
-
|
| 417 |
-
def __init__(
|
| 418 |
-
self,
|
| 419 |
-
causal: bool = True,
|
| 420 |
-
softmax_scale: Optional[float] = None,
|
| 421 |
-
attention_dropout: float = 0.0,
|
| 422 |
-
) -> None:
|
| 423 |
-
super().__init__()
|
| 424 |
-
|
| 425 |
-
self.causal = causal
|
| 426 |
-
self.softmax_scale = softmax_scale
|
| 427 |
-
self.drop = nn.Dropout(attention_dropout)
|
| 428 |
-
|
| 429 |
-
def forward(
|
| 430 |
-
self,
|
| 431 |
-
q: torch.FloatTensor,
|
| 432 |
-
kv: torch.FloatTensor,
|
| 433 |
-
causal: bool = None,
|
| 434 |
-
key_padding_mask: Optional[torch.BoolTensor] = None,
|
| 435 |
-
**kwargs,
|
| 436 |
-
) -> torch.FloatTensor:
|
| 437 |
-
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
| 438 |
-
seqlen_k = kv.shape[1]
|
| 439 |
-
|
| 440 |
-
if kv.shape[3] != q.shape[2]:
|
| 441 |
-
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
|
| 442 |
-
k, v = kv.unbind(dim=2)
|
| 443 |
-
|
| 444 |
-
causal = self.causal if causal is None else causal
|
| 445 |
-
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
| 446 |
-
|
| 447 |
-
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
| 448 |
-
|
| 449 |
-
if key_padding_mask is not None:
|
| 450 |
-
padding_mask = torch.full(
|
| 451 |
-
(batch_size, seqlen_k),
|
| 452 |
-
-10000.0,
|
| 453 |
-
dtype=scores.dtype,
|
| 454 |
-
device=scores.device,
|
| 455 |
-
)
|
| 456 |
-
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
| 457 |
-
|
| 458 |
-
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
| 459 |
-
|
| 460 |
-
if causal:
|
| 461 |
-
rows = rearrange(torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1")
|
| 462 |
-
cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long)
|
| 463 |
-
causal_mask = cols > rows + seqlen_k - seqlen_q
|
| 464 |
-
|
| 465 |
-
scores = scores.masked_fill(causal_mask, -10000.0)
|
| 466 |
-
|
| 467 |
-
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
| 468 |
-
attention = self.drop(attention)
|
| 469 |
-
|
| 470 |
-
output = torch.einsum("bhts,bshd->bthd", attention, v)
|
| 471 |
-
|
| 472 |
-
return output
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
def _find_mha_dims(
|
| 476 |
-
config: PretrainedConfig,
|
| 477 |
-
n_head: Optional[int] = None,
|
| 478 |
-
n_head_kv: Optional[int] = None,
|
| 479 |
-
head_dim: Optional[int] = None,
|
| 480 |
-
) -> Tuple[int, int]:
|
| 481 |
-
assert all(
|
| 482 |
-
hasattr(config, attr) for attr in ["n_embd", "n_head"]
|
| 483 |
-
), "`config` must have `n_embd` and `n_head` attributes."
|
| 484 |
-
|
| 485 |
-
if head_dim is None:
|
| 486 |
-
assert (
|
| 487 |
-
config.n_embd % config.n_head == 0
|
| 488 |
-
), f"Hidden size ({config.n_embd}) must be divisible by the number of heads ({config.n_head})."
|
| 489 |
-
|
| 490 |
-
if n_head is None and head_dim is None:
|
| 491 |
-
head_dim = config.n_embd // config.n_head
|
| 492 |
-
n_head = config.n_head
|
| 493 |
-
elif n_head is None or head_dim is None:
|
| 494 |
-
raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
|
| 495 |
-
|
| 496 |
-
if n_head_kv is None:
|
| 497 |
-
n_head_kv = getattr(config, "n_head_kv", None) or n_head
|
| 498 |
-
assert n_head % n_head_kv == 0, "`n_head` must be divisible by `n_head_kv`."
|
| 499 |
-
|
| 500 |
-
return n_head, n_head_kv, head_dim
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
def _update_kv_cache(kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int) -> torch.FloatTensor:
|
| 504 |
-
num_heads, head_dim = kv.shape[-2:]
|
| 505 |
-
|
| 506 |
-
if layer_idx not in inference_params.key_value_memory_dict:
|
| 507 |
-
kv_cache = torch.empty(
|
| 508 |
-
inference_params.max_batch_size,
|
| 509 |
-
inference_params.max_seqlen,
|
| 510 |
-
2,
|
| 511 |
-
num_heads,
|
| 512 |
-
head_dim,
|
| 513 |
-
dtype=kv.dtype,
|
| 514 |
-
device=kv.device,
|
| 515 |
-
)
|
| 516 |
-
inference_params.key_value_memory_dict[layer_idx] = kv_cache
|
| 517 |
-
else:
|
| 518 |
-
kv_cache = inference_params.key_value_memory_dict[layer_idx]
|
| 519 |
-
|
| 520 |
-
batch_start = inference_params.batch_size_offset
|
| 521 |
-
batch_end = batch_start + kv.shape[0]
|
| 522 |
-
assert batch_end <= kv_cache.shape[0]
|
| 523 |
-
|
| 524 |
-
sequence_start = inference_params.seqlen_offset
|
| 525 |
-
sequence_end = sequence_start + kv.shape[1]
|
| 526 |
-
assert sequence_end <= kv_cache.shape[1]
|
| 527 |
-
|
| 528 |
-
assert kv_cache is not None
|
| 529 |
-
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
|
| 530 |
-
kv = kv_cache[batch_start:batch_end, :sequence_end, ...]
|
| 531 |
-
|
| 532 |
-
return kv
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
class MHA(nn.Module):
|
| 536 |
-
"""Multi-head attention layer."""
|
| 537 |
-
|
| 538 |
-
def __init__(
|
| 539 |
-
self,
|
| 540 |
-
config: PretrainedConfig,
|
| 541 |
-
dtype: Optional[torch.dtype] = None,
|
| 542 |
-
device: Optional[str] = None,
|
| 543 |
-
rotary_dim: Optional[int] = None,
|
| 544 |
-
rotary_scale_base: Optional[float] = None,
|
| 545 |
-
n_head: Optional[int] = None,
|
| 546 |
-
n_head_kv: Optional[int] = None,
|
| 547 |
-
head_dim: Optional[int] = None,
|
| 548 |
-
bias: bool = True,
|
| 549 |
-
causal: bool = True,
|
| 550 |
-
softmax_scale: Optional[float] = None,
|
| 551 |
-
layer_idx: Optional[int] = None,
|
| 552 |
-
return_residual: bool = False,
|
| 553 |
-
checkpointing: bool = False,
|
| 554 |
-
) -> None:
|
| 555 |
-
super().__init__()
|
| 556 |
-
|
| 557 |
-
# Rotary embedding
|
| 558 |
-
self.rotary_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
|
| 559 |
-
if self.rotary_dim > 0:
|
| 560 |
-
rotary_kwargs = {"device": device}
|
| 561 |
-
if rotary_scale_base is not None and rotary_scale_base > 0.0:
|
| 562 |
-
rotary_kwargs["scale_base"] = rotary_scale_base
|
| 563 |
-
|
| 564 |
-
rotary_cls = FlashRotaryEmbedding if config.flash_rotary else RotaryEmbedding
|
| 565 |
-
if rotary_cls is None:
|
| 566 |
-
rotary_cls = RotaryEmbedding
|
| 567 |
-
self.rotary_emb = rotary_cls(self.rotary_dim, **rotary_kwargs)
|
| 568 |
-
|
| 569 |
-
# MLP
|
| 570 |
-
self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims(config, n_head=n_head, n_head_kv=n_head_kv, head_dim=head_dim)
|
| 571 |
-
op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv)
|
| 572 |
-
hidden_size = config.n_embd
|
| 573 |
-
|
| 574 |
-
linear_cls = FusedDense if config.fused_dense else nn.Linear
|
| 575 |
-
if linear_cls is None:
|
| 576 |
-
linear_cls = nn.Linear
|
| 577 |
-
|
| 578 |
-
self.Wqkv = linear_cls(hidden_size, op_size, bias=bias, device=device, dtype=dtype)
|
| 579 |
-
self.out_proj = linear_cls(hidden_size, hidden_size, bias=bias, device=device, dtype=dtype)
|
| 580 |
-
|
| 581 |
-
# Attention
|
| 582 |
-
attn_cls = FlashSelfAttention if config.flash_attn else SelfAttention
|
| 583 |
-
if attn_cls is None:
|
| 584 |
-
attn_cls = SelfAttention
|
| 585 |
-
|
| 586 |
-
cross_attn_cls = FlashCrossAttention if config.flash_attn else CrossAttention
|
| 587 |
-
if cross_attn_cls is None:
|
| 588 |
-
cross_attn_cls = CrossAttention
|
| 589 |
-
|
| 590 |
-
self.inner_attn = attn_cls(causal=causal, softmax_scale=softmax_scale, attention_dropout=config.attn_pdrop)
|
| 591 |
-
self.inner_cross_attn = cross_attn_cls(
|
| 592 |
-
causal=causal, softmax_scale=softmax_scale, attention_dropout=config.attn_pdrop
|
| 593 |
-
)
|
| 594 |
-
|
| 595 |
-
self.flash_attn = config.flash_attn and attn_cls is FlashSelfAttention
|
| 596 |
-
self.layer_idx = layer_idx
|
| 597 |
-
self.return_residual = return_residual
|
| 598 |
-
self.checkpointing = checkpointing
|
| 599 |
-
|
| 600 |
-
def _forward_self_attn(
|
| 601 |
-
self, x: torch.FloatTensor, key_padding_mask: Optional[torch.BoolTensor]
|
| 602 |
-
) -> torch.FloatTensor:
|
| 603 |
-
qkv = self.Wqkv(x)
|
| 604 |
-
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
|
| 605 |
-
|
| 606 |
-
if self.rotary_dim > 0:
|
| 607 |
-
qkv = self.rotary_emb(qkv)
|
| 608 |
-
|
| 609 |
-
if self.flash_attn:
|
| 610 |
-
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
|
| 611 |
-
|
| 612 |
-
cu_seqlens, max_seqlen = None, None
|
| 613 |
-
if key_padding_mask is not None:
|
| 614 |
-
# If `key_padding_mask` is supplied, we need to unpad the input and retrieve
|
| 615 |
-
# the `cu_seqlens` and `max_seqlen` to be used by `flash-attn`
|
| 616 |
-
qkv, indices, cu_seqlens, max_seqlen = unpad_input(qkv, key_padding_mask)
|
| 617 |
-
|
| 618 |
-
if self.checkpointing:
|
| 619 |
-
attn_output = torch.utils.checkpoint.checkpoint(
|
| 620 |
-
self.inner_attn, qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen
|
| 621 |
-
)
|
| 622 |
-
else:
|
| 623 |
-
attn_output = self.inner_attn(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen).to(qkv.device)
|
| 624 |
-
|
| 625 |
-
# If `key_padding_mask` is supplied, we need to pad the output back to the original shape
|
| 626 |
-
return pad_input(attn_output, indices, batch_size, seqlen) if key_padding_mask is not None else attn_output
|
| 627 |
-
|
| 628 |
-
if self.checkpointing:
|
| 629 |
-
return torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, key_padding_mask=key_padding_mask)
|
| 630 |
-
|
| 631 |
-
return self.inner_attn(qkv, key_padding_mask=key_padding_mask)
|
| 632 |
-
|
| 633 |
-
def _forward_cross_attn(
|
| 634 |
-
self,
|
| 635 |
-
x: torch.FloatTensor,
|
| 636 |
-
past_key_values: Optional[InferenceParams],
|
| 637 |
-
key_padding_mask: Optional[torch.BoolTensor],
|
| 638 |
-
) -> torch.FloatTensor:
|
| 639 |
-
batch_size = x.shape[0]
|
| 640 |
-
|
| 641 |
-
qkv = self.Wqkv(x)
|
| 642 |
-
|
| 643 |
-
q = qkv[..., : self.n_head * self.head_dim]
|
| 644 |
-
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
|
| 645 |
-
|
| 646 |
-
kv = qkv[..., self.n_head * self.head_dim :]
|
| 647 |
-
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
|
| 648 |
-
|
| 649 |
-
seqlen_offset = past_key_values.seqlen_offset if past_key_values is not None else 0
|
| 650 |
-
causal = None if seqlen_offset == 0 else False
|
| 651 |
-
if self.rotary_dim > 0:
|
| 652 |
-
q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset)
|
| 653 |
-
|
| 654 |
-
if past_key_values is not None:
|
| 655 |
-
kv = _update_kv_cache(kv, past_key_values, self.layer_idx)
|
| 656 |
-
|
| 657 |
-
if self.flash_attn:
|
| 658 |
-
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
| 659 |
-
seqlen_k = kv.shape[1]
|
| 660 |
-
|
| 661 |
-
cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k = None, None, None, None
|
| 662 |
-
if key_padding_mask is not None:
|
| 663 |
-
kv, _, cu_seqlens_k, max_seqlen_k = unpad_input(kv, key_padding_mask)
|
| 664 |
-
|
| 665 |
-
if seqlen_q == 1:
|
| 666 |
-
key_padding_mask = torch.ones(batch_size, 1, device=q.device)
|
| 667 |
-
elif seqlen_q != seqlen_k:
|
| 668 |
-
key_padding_mask = key_padding_mask[:, -seqlen_q:]
|
| 669 |
-
|
| 670 |
-
q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, key_padding_mask)
|
| 671 |
-
|
| 672 |
-
if self.checkpointing:
|
| 673 |
-
attn_output = torch.utils.checkpoint.checkpoint(
|
| 674 |
-
self.inner_cross_attn,
|
| 675 |
-
q,
|
| 676 |
-
kv,
|
| 677 |
-
causal=causal,
|
| 678 |
-
cu_seqlens=cu_seqlens_q,
|
| 679 |
-
max_seqlen=max_seqlen_q,
|
| 680 |
-
cu_seqlens_k=cu_seqlens_k,
|
| 681 |
-
max_seqlen_k=max_seqlen_k,
|
| 682 |
-
)
|
| 683 |
-
else:
|
| 684 |
-
attn_output = self.inner_cross_attn(
|
| 685 |
-
q,
|
| 686 |
-
kv,
|
| 687 |
-
causal=causal,
|
| 688 |
-
cu_seqlens=cu_seqlens_q,
|
| 689 |
-
max_seqlen=max_seqlen_q,
|
| 690 |
-
cu_seqlens_k=cu_seqlens_k,
|
| 691 |
-
max_seqlen_k=max_seqlen_k,
|
| 692 |
-
)
|
| 693 |
-
|
| 694 |
-
return (
|
| 695 |
-
pad_input(attn_output, indices_q, batch_size, max_seqlen_q)
|
| 696 |
-
if key_padding_mask is not None
|
| 697 |
-
else attn_output
|
| 698 |
-
)
|
| 699 |
-
|
| 700 |
-
if self.checkpointing:
|
| 701 |
-
return torch.utils.checkpoint.checkpoint(
|
| 702 |
-
self.inner_cross_attn, q, kv, key_padding_mask=key_padding_mask, causal=causal
|
| 703 |
-
)
|
| 704 |
-
|
| 705 |
-
return self.inner_cross_attn(q, kv, key_padding_mask=key_padding_mask, causal=causal)
|
| 706 |
-
|
| 707 |
-
def forward(
|
| 708 |
-
self,
|
| 709 |
-
x: torch.FloatTensor,
|
| 710 |
-
past_key_values: Optional[InferenceParams] = None,
|
| 711 |
-
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
|
| 712 |
-
**kwargs,
|
| 713 |
-
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
| 714 |
-
# TODO: Need an alternative way for dynamic control flow: torch.any(~attention_mask.bool())
|
| 715 |
-
if attention_mask is not None:
|
| 716 |
-
attention_mask = attention_mask.bool()
|
| 717 |
-
else:
|
| 718 |
-
attention_mask = None
|
| 719 |
-
|
| 720 |
-
# MHA
|
| 721 |
-
if self.n_head == self.n_head_kv:
|
| 722 |
-
if past_key_values is None:
|
| 723 |
-
# If `past_key_values` are not supplied, we run self-attention
|
| 724 |
-
attn_output = self._forward_self_attn(x, attention_mask)
|
| 725 |
-
else:
|
| 726 |
-
# If `past_key_values` are supplied, it means that we might have cached values and
|
| 727 |
-
# could take advantage of cross-attention
|
| 728 |
-
attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
|
| 729 |
-
# MQA / GQA
|
| 730 |
-
else:
|
| 731 |
-
# Regardless of `past_key_values` being supplied or not, it always use cross-attention
|
| 732 |
-
# because `q` and `kv` lengths might be different
|
| 733 |
-
attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
|
| 734 |
-
|
| 735 |
-
output = rearrange(attn_output, "... h d -> ... (h d)")
|
| 736 |
-
output = self.out_proj(output)
|
| 737 |
-
|
| 738 |
-
return output if not self.return_residual else (output, x)
|
| 739 |
-
|
| 740 |
-
|
| 741 |
-
class ParallelBlock(nn.Module):
|
| 742 |
-
"""Parallel block.
|
| 743 |
-
|
| 744 |
-
This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
|
| 745 |
-
|
| 746 |
-
"""
|
| 747 |
-
|
| 748 |
-
def __init__(
|
| 749 |
-
self,
|
| 750 |
-
config: PretrainedConfig,
|
| 751 |
-
block_idx: Optional[int] = None,
|
| 752 |
-
) -> None:
|
| 753 |
-
super().__init__()
|
| 754 |
-
|
| 755 |
-
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
| 756 |
-
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
| 757 |
-
self.block_idx = block_idx
|
| 758 |
-
|
| 759 |
-
self.mixer = MHA(config, layer_idx=block_idx)
|
| 760 |
-
self.mlp = MLP(config)
|
| 761 |
-
|
| 762 |
-
def forward(
|
| 763 |
-
self,
|
| 764 |
-
hidden_states: torch.FloatTensor,
|
| 765 |
-
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
| 766 |
-
attention_mask: Optional[torch.BoolTensor] = None,
|
| 767 |
-
**kwargs,
|
| 768 |
-
) -> torch.FloatTensor:
|
| 769 |
-
residual = hidden_states
|
| 770 |
-
hidden_states = self.ln(hidden_states)
|
| 771 |
-
|
| 772 |
-
attn_outputs = self.mixer(hidden_states, past_key_values=past_key_values, attention_mask=attention_mask)
|
| 773 |
-
if isinstance(attn_outputs, tuple):
|
| 774 |
-
attn_outputs = attn_outputs[0]
|
| 775 |
-
|
| 776 |
-
attn_outputs = self.resid_dropout(attn_outputs)
|
| 777 |
-
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
|
| 778 |
-
|
| 779 |
-
hidden_states = attn_outputs + feed_forward_hidden_states + residual
|
| 780 |
-
|
| 781 |
-
return hidden_states
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
class CausalLMHead(nn.Module):
|
| 785 |
-
"""Causal Language Modeling head.
|
| 786 |
-
|
| 787 |
-
Reference:
|
| 788 |
-
Improving Language Understanding by Generative Pre-Training.
|
| 789 |
-
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
|
| 790 |
-
|
| 791 |
-
"""
|
| 792 |
-
|
| 793 |
-
def __init__(self, config: PretrainedConfig) -> None:
|
| 794 |
-
super().__init__()
|
| 795 |
-
|
| 796 |
-
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
| 797 |
-
self.linear = nn.Linear(config.n_embd, config.vocab_size)
|
| 798 |
-
|
| 799 |
-
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
| 800 |
-
hidden_states = self.ln(hidden_states)
|
| 801 |
-
logits = self.linear(hidden_states).to(torch.float32)
|
| 802 |
-
|
| 803 |
-
return logits
|
| 804 |
-
|
| 805 |
-
|
| 806 |
-
class CausalLMLoss(nn.Module):
|
| 807 |
-
"""Causal Language Modeling loss.
|
| 808 |
-
|
| 809 |
-
Reference:
|
| 810 |
-
Improving Language Understanding by Generative Pre-Training.
|
| 811 |
-
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
|
| 812 |
-
|
| 813 |
-
"""
|
| 814 |
-
|
| 815 |
-
def __init__(self, shift_labels: bool = True) -> None:
|
| 816 |
-
super().__init__()
|
| 817 |
-
|
| 818 |
-
self.shift_labels = shift_labels
|
| 819 |
-
self.loss_fct = nn.CrossEntropyLoss()
|
| 820 |
-
|
| 821 |
-
def forward(self, logits: torch.FloatTensor, labels: torch.LongTensor) -> torch.FloatTensor:
|
| 822 |
-
if self.shift_labels:
|
| 823 |
-
logits = logits[..., :-1, :].contiguous()
|
| 824 |
-
labels = labels[..., 1:].contiguous()
|
| 825 |
-
|
| 826 |
-
loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
| 827 |
-
|
| 828 |
-
return loss
|
| 829 |
-
|
| 830 |
-
|
| 831 |
-
class MixFormerSequentialPreTrainedModel(PreTrainedModel):
|
| 832 |
-
"""MixFormer (sequential for DeepSpeed) pre-trained model."""
|
| 833 |
-
|
| 834 |
-
config_class = MixFormerSequentialConfig
|
| 835 |
-
base_model_prefix = "transformer"
|
| 836 |
-
supports_gradient_checkpointing = True
|
| 837 |
-
|
| 838 |
-
def __init__(self, *inputs, **kwargs) -> None:
|
| 839 |
-
super().__init__(*inputs, **kwargs)
|
| 840 |
-
|
| 841 |
-
def _init_weights(self, module: nn.Module) -> None:
|
| 842 |
-
if isinstance(module, (nn.Linear,)):
|
| 843 |
-
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 844 |
-
if module.bias is not None:
|
| 845 |
-
module.bias.data.zero_()
|
| 846 |
-
elif isinstance(module, nn.Embedding):
|
| 847 |
-
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 848 |
-
if module.padding_idx is not None:
|
| 849 |
-
module.weight.data[module.padding_idx].zero_()
|
| 850 |
-
elif isinstance(module, nn.LayerNorm):
|
| 851 |
-
if module.bias is not None:
|
| 852 |
-
module.bias.data.zero_()
|
| 853 |
-
module.weight.data.fill_(1.0)
|
| 854 |
-
|
| 855 |
-
def prepare_inputs_for_generation(
|
| 856 |
-
self,
|
| 857 |
-
input_ids: torch.LongTensor,
|
| 858 |
-
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
| 859 |
-
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
|
| 860 |
-
**kwargs,
|
| 861 |
-
) -> Dict[str, Any]:
|
| 862 |
-
if past_key_values is None or not (isinstance(past_key_values, InferenceParams)):
|
| 863 |
-
past_key_values = InferenceParams(
|
| 864 |
-
max_seqlen=self.config.n_positions,
|
| 865 |
-
max_batch_size=input_ids.shape[0],
|
| 866 |
-
seqlen_offset=0,
|
| 867 |
-
batch_size_offset=0,
|
| 868 |
-
key_value_memory_dict={},
|
| 869 |
-
lengths_per_sample=None,
|
| 870 |
-
)
|
| 871 |
-
else:
|
| 872 |
-
# Assume that `past_key_values` has cached all tokens up to the last token in `input_ids`
|
| 873 |
-
past_key_values.seqlen_offset = len(input_ids[0]) - 1
|
| 874 |
-
input_ids = input_ids[:, -1].unsqueeze(-1)
|
| 875 |
-
|
| 876 |
-
return {
|
| 877 |
-
"input_ids": input_ids,
|
| 878 |
-
"past_key_values": past_key_values,
|
| 879 |
-
"attention_mask": attention_mask,
|
| 880 |
-
}
|
| 881 |
-
|
| 882 |
-
def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False) -> None:
|
| 883 |
-
if isinstance(module, MixFormerSequentialPreTrainedModel):
|
| 884 |
-
module.gradient_checkpointing = value
|
| 885 |
-
|
| 886 |
-
|
| 887 |
-
class MixFormerSequentialForCausalLM(MixFormerSequentialPreTrainedModel):
|
| 888 |
-
"""MixFormer (sequential for DeepSpeed) for Causal Language Modeling."""
|
| 889 |
-
|
| 890 |
-
_keys_to_ignore_on_load_missing = [""]
|
| 891 |
-
_keys_to_ignore_on_load_unexpected = [r"layers\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
|
| 892 |
-
_no_split_modules = ["ParallelBlock"]
|
| 893 |
-
|
| 894 |
-
def __init__(self, config: MixFormerSequentialConfig) -> None:
|
| 895 |
-
super().__init__(config)
|
| 896 |
-
|
| 897 |
-
modules = [Embedding(config)]
|
| 898 |
-
modules += [ParallelBlock(config, block_idx=i) for i in range(config.n_layer)]
|
| 899 |
-
modules.append(CausalLMHead(config))
|
| 900 |
-
|
| 901 |
-
self.layers = nn.Sequential(*modules)
|
| 902 |
-
self.loss = CausalLMLoss()
|
| 903 |
-
|
| 904 |
-
self.post_init()
|
| 905 |
-
|
| 906 |
-
def get_input_embeddings(self) -> nn.Embedding:
|
| 907 |
-
return self.layers[0].wte
|
| 908 |
-
|
| 909 |
-
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
|
| 910 |
-
self.layers[0].wte = new_embeddings
|
| 911 |
-
|
| 912 |
-
def get_output_embeddings(self) -> nn.Linear:
|
| 913 |
-
return self.layers[-1].linear
|
| 914 |
-
|
| 915 |
-
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
|
| 916 |
-
self.layers[-1].linear = new_embeddings
|
| 917 |
-
|
| 918 |
-
def forward(
|
| 919 |
-
self,
|
| 920 |
-
input_ids: torch.LongTensor,
|
| 921 |
-
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
| 922 |
-
attention_mask: Optional[torch.BoolTensor] = None,
|
| 923 |
-
labels: Optional[torch.LongTensor] = None,
|
| 924 |
-
**kwargs,
|
| 925 |
-
) -> CausalLMOutputWithPast:
|
| 926 |
-
hidden_layer = self.layers[0](input_ids)
|
| 927 |
-
for module in self.layers[1:-1]:
|
| 928 |
-
hidden_layer = module(hidden_layer, past_key_values=past_key_values, attention_mask=attention_mask)
|
| 929 |
-
lm_logits = self.layers[-1](hidden_layer)
|
| 930 |
-
|
| 931 |
-
loss = None
|
| 932 |
-
if labels is not None:
|
| 933 |
-
loss = self.loss(lm_logits, labels)
|
| 934 |
-
|
| 935 |
-
return CausalLMOutputWithPast(loss=loss, logits=lm_logits, past_key_values=past_key_values)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|