Spestly commited on
Commit
7d86912
·
verified ·
1 Parent(s): b751bc0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -1
README.md CHANGED
@@ -9,4 +9,94 @@ tags:
9
  license: cc-by-nc-sa-4.0
10
  language:
11
  - en
12
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  license: cc-by-nc-sa-4.0
10
  language:
11
  - en
12
+ ---
13
+ # Nous-V1 4B
14
+
15
+ ## Overview
16
+
17
+ **Nous-V1 4B** is a cutting-edge 4 billion parameter language model developed by Apexion AI, based on the architecture of [Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B). Designed for versatility across diverse NLP tasks, Nous-V1 4B delivers strong performance in conversational AI, knowledge reasoning, code generation, and content creation.
18
+
19
+ **Key Features:**
20
+
21
+ - **⚡ Efficient 4B Parameter Scale:** Balances model capability with practical deployment on modern hardware
22
+ - **🧠 Enhanced Contextual Understanding:** Supports an 8,192 token context window, enabling complex multi-turn conversations and document analysis
23
+ - **🌐 Multilingual & Multi-domain:** Trained on a diverse dataset for broad language and domain coverage
24
+ - **🤖 Instruction-Following & Adaptability:** Fine-tuned to respond accurately and adaptively across tasks
25
+ - **🚀 Optimized Inference:** Suitable for GPU environments such as NVIDIA A100, T4, and P100 for low-latency applications
26
+
27
+ ---
28
+
29
+ ## Why Choose Nous-V1 4B?
30
+
31
+ While larger models can offer more raw power, Nous-V1 4B strikes a practical balance — optimized for deployment efficiency without significant compromise on language understanding or generation quality. It’s ideal for applications requiring:
32
+
33
+ - Real-time conversational agents
34
+ - Code completion and programming assistance
35
+ - Content generation and summarization
36
+ - Multilingual natural language understanding
37
+
38
+ ---
39
+
40
+ ## 🖥️ How to Run Locally
41
+
42
+ You can easily integrate Nous-V1 4B via the Hugging Face Transformers library or deploy it on popular serving platforms.
43
+
44
+ ### Using Hugging Face Transformers
45
+
46
+ ```python
47
+ # Use a pipeline as a high-level helper
48
+ from transformers import pipeline
49
+
50
+ pipe = pipeline("text-generation", model="apexion-ai/Nous-V1-4B")
51
+ messages = [
52
+ {"role": "user", "content": "Who are you?"},
53
+ ]
54
+ pipe(messages)
55
+ ```
56
+
57
+ ### Deployment Options
58
+
59
+ - Compatible with [vLLM](https://github.com/vllm-project/vllm) for efficient serving
60
+ - Works with [llama.cpp](https://github.com/ggerganov/llama.cpp) for lightweight inference
61
+
62
+ ---
63
+
64
+ ## Recommended Sampling Parameters
65
+
66
+ ```yaml
67
+ Temperature: 0.7
68
+ Top-p: 0.9
69
+ Top-k: 40
70
+ Min-p: 0.0
71
+ ```
72
+
73
+ ---
74
+
75
+ ## FAQ
76
+
77
+ - **Q:** Can I fine-tune Nous-V1 4B on my custom data?
78
+ **A:** Yes, the model supports fine-tuning workflows via Hugging Face Trainer or custom scripts.
79
+
80
+ - **Q:** What hardware is recommended?
81
+ **A:** NVIDIA GPUs with at least 16GB VRAM (e.g., A100, 3090) are optimal for inference and fine-tuning.
82
+
83
+ - **Q:** Is the model safe to use for production?
84
+ **A:** Nous-V1 4B includes safety mitigations but should be used with human oversight and proper filtering for sensitive content.
85
+
86
+
87
+ ---
88
+
89
+ ## 📄 Citation
90
+
91
+ ```bibtex
92
+ @misc{apexion2025nousv14b,
93
+ title={Nous-V1 4B: Efficient Large Language Model for Versatile NLP Applications},
94
+ author={Apexion AI Team},
95
+ year={2025},
96
+ url={https://huggingface.co/apexion-ai/Nous-V1-4B}
97
+ }
98
+ ```
99
+
100
+ ---
101
+
102
+ *Nous-V1 4B — Powering practical AI applications with intelligent language understanding.*