--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner_swedish_test_NUMb_2 results: [] --- # bert-finetuned-ner_swedish_test_NUMb_2 This model is a fine-tuned version of [KBLab/bert-base-swedish-cased-ner](https://huggingface.co/KBLab/bert-base-swedish-cased-ner) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0676 - Precision: 0.75 - Recall: 0.7179 - F1: 0.7336 - Accuracy: 0.9811 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 128 | 0.0637 | 0.7477 | 0.6838 | 0.7143 | 0.9816 | | No log | 2.0 | 256 | 0.0642 | 0.7304 | 0.7179 | 0.7241 | 0.9803 | | No log | 3.0 | 384 | 0.0676 | 0.75 | 0.7179 | 0.7336 | 0.9811 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.7.1 - Datasets 2.2.2 - Tokenizers 0.12.1