File size: 1,038 Bytes
482208e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
tags:
- autotrain
- tabular
- regression
- tabular-regression
datasets:
- Notaspy1234/autotrain-data-Autotrain3
---
# Model Trained Using AutoTrain
- Problem type: Tabular regression
## Validation Metrics
- r2: 0.9753017864826334
- mse: 0.3290419495851166
- mae: 0.47130432128906286
- rmse: 0.5736217826975512
- rmsle: 0.057378419858521094
- loss: 0.5736217826975512
## Best Params
- learning_rate: 0.022993157585548683
- reg_lambda: 0.0030417803769039035
- reg_alpha: 0.17755049688249555
- subsample: 0.33171622212758833
- colsample_bytree: 0.10545502763287017
- max_depth: 8
- early_stopping_rounds: 387
- n_estimators: 15000
- eval_metric: rmse
## Usage
```python
import json
import joblib
import pandas as pd
model = joblib.load('model.joblib')
config = json.load(open('config.json'))
features = config['features']
# data = pd.read_csv("data.csv")
data = data[features]
predictions = model.predict(data) # or model.predict_proba(data)
# predictions can be converted to original labels using label_encoders.pkl
```
|