File size: 1,810 Bytes
67b32eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
tags:
- generated_from_trainer
datasets:
- xlsum
metrics:
- rouge
model-index:
- name: mT5-finetuned-xlsum
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: xlsum
      type: xlsum
      config: arabic
      split: validation
      args: arabic
    metrics:
    - name: Rouge1
      type: rouge
      value: 0.1179
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mT5-finetuned-xlsum

This model is a fine-tuned version of [csebuetnlp/mT5_m2o_arabic_crossSum](https://huggingface.co/csebuetnlp/mT5_m2o_arabic_crossSum) on the xlsum dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6752
- Rouge1: 0.1179
- Rouge2: 0.0231
- Rougel: 0.118
- Rougelsum: 0.1178
- Gen Len: 47.6818

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 0.8728        | 1.0   | 9380 | 0.6752          | 0.1179 | 0.0231 | 0.118  | 0.1178    | 47.6818 |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.13.1
- Tokenizers 0.13.3