File size: 34,189 Bytes
2b1c7b3 2e055bf 2b1c7b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 |
import logging
from abc import ABCMeta, abstractmethod
from dataclasses import dataclass, replace
from math import cos, pi, sqrt
from typing import Any, Dict, List, Optional, Tuple
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import FullyShardedDataParallel
from torch.optim.optimizer import Optimizer as OptimizerBase
from .model import LayerNormBase, BitLinear158
from .config import OptimizerType, SchedulerConfig, SchedulerType, TrainConfig
from .torch_util import get_default_device, is_distributed
__all__ = [
"Optimizer",
"LionW",
"AdamW",
"Scheduler",
"CosWithWarmup",
"LinearWithWarmup",
"InvSqrtWithWarmup",
"MaxScheduler",
"ConstantScheduler",
"BoltOnWarmupScheduler",
"build_optimizer",
"build_scheduler",
]
log = logging.getLogger(__name__)
class Optimizer(OptimizerBase):
def _clean_param_name(self, name: str) -> str:
return name.replace("_fsdp_wrapped_module.", "")
@torch.no_grad()
def clip_grads_and_collect_metrics(
self, global_step: int, collect_param_metrics: bool = True
) -> Dict[str, torch.Tensor]:
"""
Clips gradients for every group that has the field `max_grad_norm`.
At the same time collect metrics for each parameter and its gradient.
"""
device = get_default_device()
# NOTE (epwalsh): during distributed training we're making an assumption that the order of
# the param groups and the params within each group are the same across all ranks.
# This is justified since we initialize the parameter groups in every rank by iterating over
# `module.parameters()` or `module.named_modules()` / `module.named_parameters()`, each of which
# provides a consistent order.
# For each parameter (with a gradient) we'll collect:
# - min, max, avg, norm of the param itself
# - min, max, avg, norm of the param's gradient
# - min, max, avg, norm of any additional per-parameter optimizer state metrics returned from
# `self.get_state_for_param()`.
# Afterwards we'll reduce these all over all ranks.
per_param_min_metrics: List[torch.Tensor] = []
per_param_max_metrics: List[torch.Tensor] = []
per_param_sum_metrics: List[torch.Tensor] = []
per_param_norm_metrics: List[torch.Tensor] = []
per_param_numel_metrics: List[torch.Tensor] = []
per_param_min_metric_names: List[str] = []
per_param_max_metric_names: List[str] = []
per_param_avg_metric_names: List[str] = []
per_param_norm_metric_names: List[str] = []
# Collect metrics locally.
for group in self.param_groups:
if is_distributed():
# TODO (epwalsh): handle non-sharded params. We don't have any right now but we would
# with ReLoRa, for example.
assert group.get("sharded", True) is True
for name, p in zip(group["param_names"], group["params"]):
name = self._clean_param_name(name)
# Always need to collect the norm of gradients for clipping, even if we're not collecting
# other metrics.
tensors: List[Optional[torch.Tensor]] = [p.grad]
prefixes: List[str] = [f"grad/{name}"]
if collect_param_metrics:
state = self.get_state_for_param(p)
sorted_state_keys = sorted([k for k in state.keys()])
tensors.extend([p] + [state[key] for key in sorted_state_keys])
prefixes.extend([f"param/{name}"] + [f"{key}/{name}" for key in sorted_state_keys])
assert len(tensors) == len(prefixes)
# Get min, max, avg, and norm for all `tensors` associated with the parameter.
for x, prefix in zip(tensors, prefixes):
# grad or state tensors could be none for params that have their shards completely on
# other ranks.
if x is not None and x.numel() > 0:
if collect_param_metrics:
x_abs = x.abs()
per_param_min_metrics.append(x_abs.min().unsqueeze(0).to(dtype=torch.float32))
per_param_max_metrics.append(x_abs.max().unsqueeze(0).to(dtype=torch.float32))
per_param_sum_metrics.append(x.sum().unsqueeze(0).to(dtype=torch.float32))
per_param_numel_metrics.append(
torch.tensor([x.numel()], device=device, dtype=torch.float32)
)
per_param_norm_metrics.append(
torch.linalg.vector_norm(x, 2.0, dtype=torch.float32).unsqueeze(0)
)
else:
if collect_param_metrics:
per_param_min_metrics.append(
torch.tensor([float("inf")], device=device, dtype=torch.float32)
)
per_param_max_metrics.append(torch.tensor([0.0], device=device, dtype=torch.float32))
per_param_sum_metrics.append(torch.tensor([0.0], device=device, dtype=torch.float32))
per_param_numel_metrics.append(torch.tensor([0.0], device=device, dtype=torch.float32))
per_param_norm_metrics.append(torch.tensor([0.0], device=device, dtype=torch.float32))
if collect_param_metrics:
per_param_min_metric_names.append(f"{prefix}.min")
per_param_max_metric_names.append(f"{prefix}.max")
per_param_avg_metric_names.append(f"{prefix}.avg")
per_param_norm_metric_names.append(f"{prefix}.norm")
assert (
len(per_param_min_metrics)
== len(per_param_min_metric_names)
== len(per_param_max_metrics)
== len(per_param_max_metric_names)
== len(per_param_sum_metrics)
== len(per_param_numel_metrics)
== len(per_param_avg_metric_names)
)
assert len(per_param_norm_metrics) == len(per_param_norm_metric_names)
def is_grad_norm_metric(metric_name: str) -> bool:
return metric_name.startswith("grad/") and metric_name.endswith(".norm")
# Now reduce metrics over all ranks.
total_grad_norm: torch.Tensor
per_param_avg_metrics: List[torch.Tensor] = []
if is_distributed(): # TODO (epwalsh): skip for non-sharded params
# Reduce metrics across all ranks. Note that we can use a `reduce` for most cases
# instead of an `all_reduce`, but we need `all_reduce` for norms so that all ranks
# get the right value for gradient norms so they can clip correctly.
# Reduce mins.
if per_param_min_metrics:
all_mins = torch.cat(per_param_min_metrics).to(device)
dist.reduce(all_mins, 0, op=dist.ReduceOp.MIN)
per_param_min_metrics = all_mins.split(1)
# Reduce maxs.
if per_param_max_metrics:
all_maxs = torch.cat(per_param_max_metrics).to(device)
dist.reduce(all_maxs, 0, op=dist.ReduceOp.MAX)
per_param_max_metrics = all_maxs.split(1)
# Reduce sums or just norms.
all_norms = torch.cat(per_param_norm_metrics).to(device) ** 2.0
if per_param_sum_metrics and per_param_numel_metrics:
all_sums = torch.cat(per_param_sum_metrics).to(device)
all_numels = torch.cat(per_param_numel_metrics).to(device)
all_sums_norms_numels = torch.cat(
[all_sums.unsqueeze(0), all_norms.unsqueeze(0), all_numels.unsqueeze(0)], dim=0
)
dist.all_reduce(all_sums_norms_numels, op=dist.ReduceOp.SUM)
all_sums, all_norms, all_numels = all_sums_norms_numels.split(1)
# Get averages.
# NOTE: could get infs for non-rank0 processes but that's okay.
per_param_avg_metrics = (all_sums / all_numels).squeeze(0).split(1)
else:
dist.all_reduce(all_norms, op=dist.ReduceOp.SUM)
grad_norm_metric_mask = torch.tensor(
[float(is_grad_norm_metric(n)) for n in per_param_norm_metric_names], device=all_norms.device
)
total_grad_norm = (all_norms * grad_norm_metric_mask).sum() ** 0.5
per_param_norm_metrics = (all_norms ** (0.5)).squeeze(0).split(1)
else:
total_grad_norm = (
torch.cat(
[
m
for m, n in zip(per_param_norm_metrics, per_param_norm_metric_names)
if is_grad_norm_metric(n)
]
)
** 2.0
).sum() ** 0.5
per_param_avg_metrics = [x / n for x, n in zip(per_param_sum_metrics, per_param_numel_metrics)]
assert len(per_param_avg_metrics) == len(per_param_avg_metric_names)
# Collect all metrics into a single dict.
all_metrics: Dict[str, torch.Tensor] = {}
for metric_name, metric in zip(per_param_min_metric_names, per_param_min_metrics):
all_metrics[metric_name] = metric.squeeze(0)
for metric_name, metric in zip(per_param_max_metric_names, per_param_max_metrics):
all_metrics[metric_name] = metric.squeeze(0)
for metric_name, metric in zip(per_param_avg_metric_names, per_param_avg_metrics):
all_metrics[metric_name] = metric.squeeze(0)
for metric_name, metric in zip(per_param_norm_metric_names, per_param_norm_metrics):
all_metrics[metric_name] = metric.squeeze(0)
all_metrics["total_grad_norm"] = total_grad_norm
# Clip gradients.
num_grads_clipped = 0
num_eligible_grads = 0
for group in self.param_groups:
if (max_norm_ratio := group.get("max_grad_norm_ratio")) is not None:
num_clipped = self._do_adaptive_clipping(
group, max_norm_ratio, global_step, all_metrics, collect_param_metrics=collect_param_metrics
)
elif (max_norm := group.get("max_grad_norm")) is not None:
num_clipped = self._do_global_fixed_clipping(
group, max_norm, all_metrics, collect_param_metrics=collect_param_metrics
)
else:
# No clipping needed.
continue
num_eligible_grads += len(group["params"])
if num_clipped is not None:
num_grads_clipped += num_clipped
if collect_param_metrics:
if num_eligible_grads > 0:
clipping_rate = torch.tensor(num_grads_clipped / num_eligible_grads, device="cpu")
else:
clipping_rate = torch.tensor(0.0, device="cpu")
all_metrics["clipping_rate"] = clipping_rate
return all_metrics
else:
return {}
@torch.no_grad()
def _do_adaptive_clipping(
self,
group: Dict[str, Any],
max_norm_ratio: float,
global_step: int,
all_metrics: Dict[str, torch.Tensor],
collect_param_metrics: bool = True,
) -> Optional[int]:
"""
Do adaptive gradient clipping on a param group.
If ``collect_param_metrics`` is ``True`` this will return the total number of gradients clipped.
"""
device = get_default_device()
num_grads_clipped = 0
# We'll use the bigger of beta1 and beta2 to update the exponential average of the norm of
# the gradient (a scalar), not to be confused with the exponential average of the gradient.
# TODO (epwalsh): handle optimizers that don't have betas.
beta1, beta2 = group["betas"]
beta = max(beta1, beta2)
for name, p in zip(group["param_names"], group["params"]):
name = self._clean_param_name(name)
grad_norm = all_metrics.get(f"grad/{name}.norm")
if grad_norm is None:
continue
# Get or initialize the exponential average of grad norm.
# TODO: The way we have it right now, every rank tracks the `grad_norm_exp_avg` of every parameter,
# even parameters for which the corresponding local shard is empty. This has the potential to
# cause some issues with the optimizer, as we ran into with https://github.com/allenai/LLM/pull/372.
# So we should consider changing how we do this at some point so that we don't add any state
# to parameters for which the local shard is empty. That would probably add extra distributed
# communication, at least on steps where we have to log (i.e. when `collect_param_metrics=True`).
state = self.state[p]
grad_norm_exp_avg = state.get("grad_norm_exp_avg")
if grad_norm_exp_avg is None:
grad_norm_exp_avg = grad_norm.clone().to(device)
# We don't want to add anything to `state` until `state` has been initialized, otherwise
# this will crash some optimizers which rely on checking `len(state)`. The downside here
# is that we won't start tracking `grad_norm_exp_avg` until the 2nd training step.
if global_step > 1:
state["grad_norm_exp_avg"] = grad_norm_exp_avg
max_allowed_norm = max_norm_ratio * grad_norm_exp_avg
clip_coef = max_allowed_norm / (grad_norm + 1e-6)
# Clip the gradients and update the exponential average.
# Note that multiplying by the clamped coefficient is meaningless when it is
# equal to 1, but it avoids the host-device sync that would result from `if clip_coef_clamped < 1`.
clip_coef_clamped = torch.clamp(clip_coef, max=1.0)
if p.grad is not None:
# p.grad could be none for some ranks when using FSDP.
p.grad.detach().mul_(clip_coef_clamped.to(p.grad.device, p.grad.dtype))
# Update the exponential average of the norm of the gradient with the clipped norm of the gradient.
grad_norm_exp_avg.lerp_((grad_norm * clip_coef_clamped).to(grad_norm_exp_avg.device), 1 - beta)
# Alternative: update with the *unclipped* norm of the gradient.
# grad_norm_exp_avg.lerp_(grad_norm.to(grad_norm_exp_avg.device), 1 - beta)
if collect_param_metrics:
# Can't avoid host-device sync here.
if clip_coef_clamped < 1.0:
num_grads_clipped += 1
all_metrics[f"grad_norm_exp_avg/{name}"] = grad_norm_exp_avg
return num_grads_clipped if collect_param_metrics else None
@torch.no_grad()
def _do_global_fixed_clipping(
self,
group: Dict[str, Any],
max_norm: float,
all_metrics: Dict[str, torch.Tensor],
collect_param_metrics: bool = True,
) -> Optional[int]:
"""
Do global fixed gradient clipping on a param group.
If ``collect_param_metrics`` is ``True`` this will return the total number of gradients clipped.
"""
device = get_default_device()
total_grad_norm = all_metrics["total_grad_norm"]
clip_coef = max_norm / (total_grad_norm.to(device) + 1e-6)
clip_coef_clamped = torch.clamp(clip_coef, max=1.0)
num_grads_clipped: Optional[int] = None
if collect_param_metrics:
# Can't avoid host-device sync here.
if clip_coef_clamped < 1.0:
num_grads_clipped = len(group["params"])
for p in group["params"]:
# Clip the gradients.
# Note that multiplying by the clamped coefficient is meaningless when it is
# equal to 1, but it avoids the host-device sync that would result from `if clip_coef_clamped < 1`.
if p.grad is not None:
# p.grad could be none for some ranks when using FSDP.
p.grad.detach().mul_(clip_coef_clamped.to(p.grad.device, p.grad.dtype))
return num_grads_clipped
def get_post_step_metrics(self, module: nn.Module) -> Dict[str, torch.Tensor]:
del module
return {}
def get_state_for_param(self, param: nn.Parameter) -> Dict[str, Optional[torch.Tensor]]:
del param
return {}
class LionW(Optimizer):
"""
Adapted from https://github.com/google/automl/blob/master/lion/lion_pytorch.py
"""
def __init__(
self,
params,
lr: float = 1e-4,
betas: Tuple[float, float] = (0.9, 0.99),
weight_decay: float = 0.0,
):
assert lr > 0.0
assert all([0.0 <= beta <= 1.0 for beta in betas])
defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay)
super().__init__(params, defaults)
for group in self.param_groups:
group["initial_lr"] = group["lr"]
self._update_total_dot_prod: Optional[torch.Tensor] = None
self._update_total_norm: Optional[torch.Tensor] = None
self._signed_update_total_norm: Optional[torch.Tensor] = None
def get_post_step_metrics(self, module: nn.Module) -> Dict[str, torch.Tensor]:
update_total_dot_prod = self._update_total_dot_prod
update_total_norm = self._update_total_norm
signed_update_total_norm = self._signed_update_total_norm
if update_total_dot_prod is None or update_total_norm is None or signed_update_total_norm is None:
return {}
if is_distributed() and isinstance(module, FullyShardedDataParallel):
# Reduce total dot prod and norms across all ranks.
update_total_norm = update_total_norm**2.0
signed_update_total_norm = signed_update_total_norm**2.0
# Reduce all together to avoid multiple communication calls.
all_together = torch.stack([update_total_dot_prod, update_total_norm, signed_update_total_norm])
# Only need the final result on rank0, since that's where we log from.
dist.reduce(all_together, 0)
update_total_dot_prod, update_total_norm, signed_update_total_norm = all_together
update_total_norm = update_total_norm**0.5
signed_update_total_norm = signed_update_total_norm**0.5
update_cos_sim = update_total_dot_prod / torch.max(
update_total_norm * signed_update_total_norm, torch.tensor(1e-8, device=get_default_device())
)
return {"update_cos_sim": update_cos_sim}
@torch.no_grad()
def step(self, closure=None) -> None:
if closure is not None:
with torch.enable_grad():
closure()
update_total_dot_prod = torch.tensor(0.0, dtype=torch.float32)
update_norms = []
signed_update_norms = []
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
# Perform step weight decay
p.data.mul_(1 - group["lr"] * group["weight_decay"])
grad = p.grad
state = self.state[p]
# State initialization
if len(state) == 0:
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(p)
exp_avg = state["exp_avg"]
beta1, beta2 = group["betas"]
# Weight update
update = exp_avg * beta1 + grad * (1 - beta1)
signed_update = torch.sign(update)
p.add_(signed_update, alpha=-group["lr"])
# Decay the momentum running average coefficient
exp_avg.mul_(beta2).add_(grad, alpha=1 - beta2)
# Track dot product and norms of update vs signed update in order to calculate
# their cosine similarity.
update_total_dot_prod = update_total_dot_prod.to(update.device)
update_total_dot_prod += torch.tensordot(update, signed_update, dims=len(update.shape))
update_norms.append(torch.linalg.vector_norm(update, 2.0, dtype=torch.float32))
signed_update_norms.append(torch.linalg.vector_norm(signed_update, 2.0, dtype=torch.float32))
# Compute cosine similarity between update and signed update.
self._update_total_dot_prod = update_total_dot_prod.to(get_default_device())
self._update_total_norm = torch.linalg.vector_norm(
torch.stack(update_norms),
2.0,
dtype=torch.float32,
).to(get_default_device())
self._signed_update_total_norm = torch.linalg.vector_norm(
torch.stack(signed_update_norms),
2.0,
dtype=torch.float32,
).to(get_default_device())
class AdamW(torch.optim.AdamW, Optimizer):
def get_state_for_param(self, param: nn.Parameter) -> Dict[str, Optional[torch.Tensor]]:
return {key: self.state[param].get(key) for key in ("exp_avg", "exp_avg_sq")} # type: ignore
@dataclass
class Scheduler(metaclass=ABCMeta):
# NOTE: these fields are not given default values because otherwise dataclasses complains
# about how the scheduler subclasses are defined.
grad_clip_warmup_steps: Optional[int]
grad_clip_warmup_factor: Optional[float]
@abstractmethod
def get_lr(self, initial_lr: float, step: int, max_steps: int) -> float:
raise NotImplementedError
def _get_max_grad_norm_coeff(
self, initial_value: Optional[float], step: int, max_steps: int
) -> Optional[float]:
del max_steps # might need this in the future, but for now I just wanted to match the API of `get_lr()`.
if initial_value is None:
return None
elif (
self.grad_clip_warmup_steps is None
or self.grad_clip_warmup_factor is None
or step > self.grad_clip_warmup_steps
):
return initial_value
else:
return self.grad_clip_warmup_factor * initial_value
def get_max_grad_norm(
self, initial_max_grad_norm: Optional[float], step: int, max_steps: int
) -> Optional[float]:
return self._get_max_grad_norm_coeff(initial_max_grad_norm, step, max_steps)
def get_max_grad_norm_ratio(
self, initial_max_grad_norm_ratio: Optional[float], step: int, max_steps: int
) -> Optional[float]:
return self._get_max_grad_norm_coeff(initial_max_grad_norm_ratio, step, max_steps)
def _linear_warmup(self, initial_lr: float, step: int, warmup_steps: int = 2000) -> float:
return initial_lr * (0.1 + 0.9 * min(step, warmup_steps) / warmup_steps)
@dataclass
class CosWithWarmup(Scheduler):
warmup_steps: int
alpha_f: float = 0.1
t_max: Optional[int] = None
def get_lr(self, initial_lr: float, step: int, max_steps: int) -> float:
max_steps = max_steps if self.t_max is None else self.t_max
eta_min = initial_lr * self.alpha_f
if step < self.warmup_steps:
return self._linear_warmup(initial_lr, step, self.warmup_steps)
elif step >= max_steps:
return eta_min
else:
step = step - self.warmup_steps
max_steps = max_steps - self.warmup_steps
return eta_min + (initial_lr - eta_min) * (1 + cos(pi * step / max_steps)) / 2
@dataclass
class LinearWithWarmup(Scheduler):
warmup_steps: int
alpha_f: float = 0.1
t_max: Optional[int] = None
def get_lr(self, initial_lr: float, step: int, max_steps: int) -> float:
max_steps = max_steps if self.t_max is None else self.t_max
eta_min = initial_lr * self.alpha_f
if step < self.warmup_steps:
return self._linear_warmup(initial_lr, step, self.warmup_steps)
elif step >= max_steps:
return eta_min
else:
step = step - self.warmup_steps
max_steps = max_steps - self.warmup_steps
return initial_lr - (initial_lr - eta_min) * (step / max_steps)
@dataclass
class InvSqrtWithWarmup(Scheduler):
warmup_steps: int
def get_lr(self, initial_lr: float, step: int, max_steps: int) -> float:
if step < self.warmup_steps:
return self._linear_warmup(initial_lr, step, self.warmup_steps)
del max_steps
return initial_lr * sqrt(self.warmup_steps / max(self.warmup_steps, step))
@dataclass
class MaxScheduler(Scheduler):
sched1: Scheduler
sched2: Scheduler
def get_lr(self, initial_lr: float, step: int, max_steps: int) -> float:
return max(
self.sched1.get_lr(initial_lr, step, max_steps), self.sched2.get_lr(initial_lr, step, max_steps)
)
@dataclass
class BoltOnWarmupScheduler(Scheduler):
inner: Scheduler
warmup_start: int
warmup_end: int
@classmethod
def wrap(cls, scheduler: Scheduler, warmup_start: int, warmup_end: int) -> "BoltOnWarmupScheduler":
return cls(
grad_clip_warmup_steps=None,
grad_clip_warmup_factor=None,
inner=scheduler,
warmup_start=warmup_start,
warmup_end=warmup_end,
)
def get_lr(self, initial_lr: float, step: int, max_steps: int) -> float:
if step < self.warmup_start:
return 0.0
if step < self.warmup_end:
lr_at_intercept = self.inner.get_lr(initial_lr, self.warmup_end, max_steps)
return lr_at_intercept * (step - self.warmup_start) / (self.warmup_end - self.warmup_start)
else:
return self.inner.get_lr(initial_lr, step, max_steps)
def _get_max_grad_norm_coeff(
self, initial_value: Optional[float], step: int, max_steps: int
) -> Optional[float]:
return self.inner._get_max_grad_norm_coeff(initial_value, step, max_steps)
@dataclass
class ConstantScheduler(Scheduler):
def get_lr(self, initial_lr: float, step: int, max_steps: int) -> float:
del step, max_steps
return initial_lr
PARAM_GROUP_FIELDS = ("sharded", "max_grad_norm", "max_grad_norm_ratio", "param_names")
def get_param_groups(cfg: TrainConfig, model: nn.Module) -> List[Dict[str, Any]]:
"""
Separate parameters into weight decay and non weight decay groups.
"""
param_groups: List[Dict[str, Any]]
param_group_defaults = {
"sharded": isinstance(model, FullyShardedDataParallel),
"max_grad_norm": cfg.max_grad_norm,
"max_grad_norm_ratio": cfg.max_grad_norm_ratio,
}
# Separate out parameters that we don't want to apply weight decay to, like norms and biases.
decay = set()
no_decay = set()
all_params = {}
for mn, m in model.named_modules():
for pn, p in m.named_parameters():
# NOTE: because named_modules and named_parameters are recursive
# we will see the same tensors p many many times, but doing it this way
# allows us to know which parent module any tensor p belongs to...
if not p.requires_grad:
continue
fpn = f"{mn}.{pn}" if mn else pn
all_params[fpn] = p
if pn.endswith("bias"):
if cfg.optimizer.decay_norm_and_bias:
decay.add(fpn)
else:
no_decay.add(fpn)
elif pn.endswith("weight") and (isinstance(m, nn.Linear) or isinstance(m, BitLinear158)):
decay.add(fpn)
elif pn.endswith("weight") and isinstance(m, (LayerNormBase, nn.LayerNorm)):
if cfg.optimizer.decay_norm_and_bias:
decay.add(fpn)
else:
no_decay.add(fpn)
elif pn.endswith("weight") and isinstance(m, nn.Embedding):
if cfg.optimizer.decay_embeddings:
decay.add(fpn)
else:
no_decay.add(fpn)
# Validate that we've considered every parameter
inter_params = decay & no_decay
union_params = decay | no_decay
assert len(inter_params) == 0, f"parameters {inter_params} made it into both decay/no_decay sets!"
assert (
len(all_params.keys() - union_params) == 0
), f"parameters {all_params.keys() - union_params} were not separated into either decay/no_decay set!"
# Create the pytorch optimizer groups.
decay_sorted = sorted(list(decay))
no_decay_sorted = sorted(list(no_decay))
param_groups = []
if len(decay_sorted) > 0:
param_groups.append(
{
"params": [all_params[pn] for pn in decay_sorted],
"param_names": decay_sorted,
**param_group_defaults,
}
)
if len(no_decay_sorted) > 0:
param_groups.append(
{
"params": [all_params[pn] for pn in no_decay_sorted],
"param_names": no_decay_sorted,
"weight_decay": 0.0,
**param_group_defaults,
}
)
# Validate fields.
for group in param_groups:
for key in PARAM_GROUP_FIELDS:
assert key in group
return param_groups
def fix_optim_state_dict(optimizer: Optimizer, state_dict: Dict[str, Any]) -> Dict[str, Any]:
"""
Make sure old optim state dicts are compatible with new versions.
"""
if len(state_dict["param_groups"]) == 1 and len(optimizer.param_groups) == 2:
assert optimizer.param_groups[1]["weight_decay"] == 0.0
# Decay
decay_param_group = {k: v for k, v in state_dict["param_groups"][0].items() if k != "params"}
decay_param_group["params"] = optimizer.state_dict()["param_groups"][0]["params"]
# No decay.
no_decay_param_group = {k: v for k, v in state_dict["param_groups"][0].items() if k != "params"}
no_decay_param_group["weight_decay"] = 0.0
no_decay_param_group["params"] = optimizer.state_dict()["param_groups"][1]["params"]
state_dict["param_groups"] = [decay_param_group, no_decay_param_group]
assert len(optimizer.param_groups) == len(state_dict["param_groups"])
# Make sure:
# - All required fields are included in the state dict,
# - And that the values of those fields doesn't change from what's currently set in the optimizer,
# since we might have changed those fields on purpose after a restart.
for group, sd_group in zip(optimizer.param_groups, state_dict["param_groups"]):
for key in PARAM_GROUP_FIELDS:
sd_group[key] = group[key]
return state_dict
def build_optimizer(cfg: TrainConfig, model: nn.Module) -> Optimizer:
param_groups = get_param_groups(cfg, model)
log.info(f"Constructing optimizer with {len(param_groups)} param groups")
if cfg.optimizer.name == OptimizerType.lionw:
return LionW(
param_groups,
lr=cfg.optimizer.learning_rate,
betas=cfg.optimizer.betas,
weight_decay=cfg.optimizer.weight_decay,
)
elif cfg.optimizer.name == OptimizerType.adamw:
return AdamW(
param_groups,
lr=cfg.optimizer.learning_rate,
betas=cfg.optimizer.betas,
weight_decay=cfg.optimizer.weight_decay,
eps=1e-5,
)
else:
raise NotImplementedError
def build_scheduler(cfg: TrainConfig, sched_cfg: Optional[SchedulerConfig] = None) -> Scheduler:
sched_cfg = sched_cfg if sched_cfg is not None else cfg.scheduler
if sched_cfg.name == SchedulerType.cosine_with_warmup:
return CosWithWarmup(
grad_clip_warmup_steps=None
if sched_cfg.grad_clip_warmup_steps is None
else int(sched_cfg.grad_clip_warmup_steps),
grad_clip_warmup_factor=sched_cfg.grad_clip_warmup_factor,
warmup_steps=int(sched_cfg.t_warmup),
alpha_f=sched_cfg.alpha_f,
t_max=None if sched_cfg.t_max is None else int(sched_cfg.t_max),
)
elif sched_cfg.name == SchedulerType.linear_with_warmup:
return LinearWithWarmup(
grad_clip_warmup_steps=None
if sched_cfg.grad_clip_warmup_steps is None
else int(sched_cfg.grad_clip_warmup_steps),
grad_clip_warmup_factor=sched_cfg.grad_clip_warmup_factor,
warmup_steps=int(sched_cfg.t_warmup),
alpha_f=sched_cfg.alpha_f,
t_max=None if sched_cfg.t_max is None else int(sched_cfg.t_max),
)
elif sched_cfg.name == SchedulerType.inverse_sqrt_with_warmup:
return InvSqrtWithWarmup(
grad_clip_warmup_steps=None
if sched_cfg.grad_clip_warmup_steps is None
else int(sched_cfg.grad_clip_warmup_steps),
grad_clip_warmup_factor=sched_cfg.grad_clip_warmup_factor,
warmup_steps=int(sched_cfg.t_warmup),
)
elif sched_cfg.name == SchedulerType.max_scheduler:
return MaxScheduler(
grad_clip_warmup_steps=None
if sched_cfg.grad_clip_warmup_steps is None
else int(sched_cfg.grad_clip_warmup_steps),
grad_clip_warmup_factor=sched_cfg.grad_clip_warmup_factor,
sched1=build_scheduler(cfg, replace(sched_cfg, name=SchedulerType.cosine_with_warmup)),
sched2=build_scheduler(cfg, replace(sched_cfg, name=SchedulerType.inverse_sqrt_with_warmup)),
)
elif sched_cfg.name == SchedulerType.constant:
return ConstantScheduler(
grad_clip_warmup_steps=None
if sched_cfg.grad_clip_warmup_steps is None
else int(sched_cfg.grad_clip_warmup_steps),
grad_clip_warmup_factor=sched_cfg.grad_clip_warmup_factor,
)
else:
raise NotImplementedError
|