Upload folder using huggingface_hub
Browse files- config.json +45 -0
- config.py +26 -0
- generation_config.json +6 -0
- model.safetensors +3 -0
- modeling.py +671 -0
config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"LlamaMlaForCausalLM"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoModelForCausalLM": "modeling.LlamaMlaForCausalLM",
|
7 |
+
"AutoModel": "modeling.LlamaMlaModel",
|
8 |
+
"AutoConfig": "config.LlamaMlaConfig"
|
9 |
+
},
|
10 |
+
"attention_bias": false,
|
11 |
+
"attention_dropout": 0.0,
|
12 |
+
"bos_token_id": 128000,
|
13 |
+
"eos_token_id": 128001,
|
14 |
+
"head_dim": 64,
|
15 |
+
"hidden_act": "silu",
|
16 |
+
"hidden_size": 2048,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 8192,
|
19 |
+
"kv_lora_rank": 512,
|
20 |
+
"max_position_embeddings": 131072,
|
21 |
+
"mlp_bias": false,
|
22 |
+
"model_type": "llama_mla",
|
23 |
+
"num_attention_heads": 32,
|
24 |
+
"num_hidden_layers": 16,
|
25 |
+
"num_key_value_heads": 8,
|
26 |
+
"pretraining_tp": 1,
|
27 |
+
"q_lora_rank": 1536,
|
28 |
+
"qk_nope_head_dim": 64,
|
29 |
+
"qk_rope_head_dim": 32,
|
30 |
+
"rms_norm_eps": 1e-05,
|
31 |
+
"rope_scaling": {
|
32 |
+
"factor": 32.0,
|
33 |
+
"high_freq_factor": 4.0,
|
34 |
+
"low_freq_factor": 1.0,
|
35 |
+
"original_max_position_embeddings": 8192,
|
36 |
+
"rope_type": "llama3"
|
37 |
+
},
|
38 |
+
"rope_theta": 500000.0,
|
39 |
+
"tie_word_embeddings": true,
|
40 |
+
"torch_dtype": "bfloat16",
|
41 |
+
"transformers_version": "4.52.0.dev0",
|
42 |
+
"use_cache": true,
|
43 |
+
"v_head_dim": 64,
|
44 |
+
"vocab_size": 128256
|
45 |
+
}
|
config.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.models.llama.configuration_llama import LlamaConfig
|
2 |
+
|
3 |
+
class LlamaMlaConfig(LlamaConfig):
|
4 |
+
model_type = "llama_mla"
|
5 |
+
base_model_pp_plan = None
|
6 |
+
base_model_tp_plan = None
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
kv_lora_rank = 512,
|
11 |
+
q_lora_rank = 1536,
|
12 |
+
qk_rope_head_dim = 64,
|
13 |
+
v_head_dim = 128,
|
14 |
+
qk_nope_head_dim = 128,
|
15 |
+
**kwargs,
|
16 |
+
):
|
17 |
+
super().__init__(**kwargs)
|
18 |
+
self.kv_lora_rank = kv_lora_rank
|
19 |
+
self.q_lora_rank = q_lora_rank
|
20 |
+
self.qk_rope_head_dim = qk_rope_head_dim
|
21 |
+
self.v_head_dim = v_head_dim
|
22 |
+
self.qk_nope_head_dim = qk_nope_head_dim
|
23 |
+
|
24 |
+
__ALL__ = [
|
25 |
+
"LlamaMlaConfig",
|
26 |
+
]
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 128000,
|
4 |
+
"eos_token_id": 128001,
|
5 |
+
"transformers_version": "4.52.0.dev0"
|
6 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d5f05b34b859a0faf9c69dace2faabde01155c68e5713ba3119b9e46709feb7
|
3 |
+
size 2624809232
|
modeling.py
ADDED
@@ -0,0 +1,671 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
from typing import Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from torch import nn
|
24 |
+
|
25 |
+
from transformers.cache_utils import Cache, DynamicCache
|
26 |
+
from transformers.generation import GenerationMixin
|
27 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
28 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
29 |
+
from transformers.modeling_layers import GradientCheckpointingLayer # type: ignore for some reason transformers doesn't have an __ALL__ in the modeling_layers.py file
|
30 |
+
from transformers.modeling_outputs import (
|
31 |
+
BaseModelOutputWithPast,
|
32 |
+
CausalLMOutputWithPast,
|
33 |
+
)
|
34 |
+
from transformers.modeling_utils import PreTrainedModel
|
35 |
+
from transformers.processing_utils import Unpack
|
36 |
+
from transformers.utils import LossKwargs, auto_docstring, can_return_tuple, is_torch_flex_attn_available, logging
|
37 |
+
|
38 |
+
from transformers.models.llama.modeling_llama import LlamaRMSNorm, LlamaRotaryEmbedding, apply_rotary_pos_emb, LlamaMLP
|
39 |
+
|
40 |
+
if is_torch_flex_attn_available():
|
41 |
+
from torch.nn.attention.flex_attention import BlockMask
|
42 |
+
|
43 |
+
from transformers.integrations.flex_attention import make_flex_block_causal_mask
|
44 |
+
|
45 |
+
from .config import LlamaMlaConfig
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__)
|
48 |
+
|
49 |
+
class LlamaMlaAttention(nn.Module):
|
50 |
+
"""Multi-headed Latent attention from 'DeepSeek-V2'"""
|
51 |
+
|
52 |
+
def __init__(self, config: LlamaMlaConfig, layer_idx: Optional[int] = None):
|
53 |
+
super().__init__()
|
54 |
+
self.config = config
|
55 |
+
self.layer_idx = layer_idx
|
56 |
+
if layer_idx is None:
|
57 |
+
logger.warning_once(
|
58 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
59 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
60 |
+
"when creating this class."
|
61 |
+
)
|
62 |
+
|
63 |
+
self.attention_dropout = config.attention_dropout
|
64 |
+
self.hidden_size = config.hidden_size
|
65 |
+
self.num_heads = config.num_attention_heads
|
66 |
+
|
67 |
+
self.max_position_embeddings = config.max_position_embeddings
|
68 |
+
self.rope_theta = config.rope_theta
|
69 |
+
self.q_lora_rank = config.q_lora_rank
|
70 |
+
self.qk_rope_head_dim = config.qk_rope_head_dim
|
71 |
+
self.kv_lora_rank = config.kv_lora_rank
|
72 |
+
self.v_head_dim = config.v_head_dim
|
73 |
+
self.qk_nope_head_dim = config.qk_nope_head_dim
|
74 |
+
self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
|
75 |
+
|
76 |
+
self.is_causal = True
|
77 |
+
|
78 |
+
if self.q_lora_rank is None:
|
79 |
+
self.q_proj = nn.Linear(
|
80 |
+
self.hidden_size, self.num_heads * self.q_head_dim, bias=False
|
81 |
+
)
|
82 |
+
else:
|
83 |
+
self.q_a_proj = nn.Linear(
|
84 |
+
self.hidden_size, config.q_lora_rank, bias=config.attention_bias
|
85 |
+
)
|
86 |
+
self.q_a_layernorm = LlamaRMSNorm(config.q_lora_rank)
|
87 |
+
self.q_b_proj = nn.Linear(
|
88 |
+
config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
|
89 |
+
)
|
90 |
+
|
91 |
+
self.kv_a_proj_with_mqa = nn.Linear(
|
92 |
+
self.hidden_size,
|
93 |
+
config.kv_lora_rank + config.qk_rope_head_dim,
|
94 |
+
bias=config.attention_bias,
|
95 |
+
)
|
96 |
+
self.kv_a_layernorm = LlamaRMSNorm(config.kv_lora_rank)
|
97 |
+
self.kv_b_proj = nn.Linear(
|
98 |
+
config.kv_lora_rank,
|
99 |
+
self.num_heads
|
100 |
+
* (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
|
101 |
+
bias=False,
|
102 |
+
)
|
103 |
+
|
104 |
+
self.o_proj = nn.Linear(
|
105 |
+
self.num_heads * self.v_head_dim,
|
106 |
+
self.hidden_size,
|
107 |
+
bias=config.attention_bias,
|
108 |
+
)
|
109 |
+
|
110 |
+
self.rotary_emb = LlamaRotaryEmbedding(config=config)
|
111 |
+
|
112 |
+
self.softmax_scale = self.q_head_dim ** (-0.5)
|
113 |
+
|
114 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
115 |
+
return (
|
116 |
+
tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim)
|
117 |
+
.transpose(1, 2)
|
118 |
+
.contiguous()
|
119 |
+
)
|
120 |
+
|
121 |
+
def forward(
|
122 |
+
self,
|
123 |
+
hidden_states: torch.Tensor,
|
124 |
+
attention_mask: Optional[torch.Tensor] = None,
|
125 |
+
position_ids: Optional[torch.LongTensor] = None,
|
126 |
+
past_key_value: Optional[Cache] = None,
|
127 |
+
output_attentions: bool = False,
|
128 |
+
use_cache: bool = False,
|
129 |
+
**kwargs,
|
130 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
131 |
+
if "padding_mask" in kwargs:
|
132 |
+
logger.warning_once(
|
133 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
134 |
+
)
|
135 |
+
bsz, q_len, _ = hidden_states.size()
|
136 |
+
|
137 |
+
if self.q_lora_rank is None:
|
138 |
+
q = self.q_proj(hidden_states)
|
139 |
+
else:
|
140 |
+
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
|
141 |
+
q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
|
142 |
+
q_nope, q_pe = torch.split(
|
143 |
+
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
|
144 |
+
)
|
145 |
+
|
146 |
+
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
|
147 |
+
compressed_kv, k_pe = torch.split(
|
148 |
+
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
|
149 |
+
)
|
150 |
+
k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
|
151 |
+
kv = (
|
152 |
+
self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
|
153 |
+
.view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
|
154 |
+
.transpose(1, 2)
|
155 |
+
)
|
156 |
+
|
157 |
+
k_nope, value_states = torch.split(
|
158 |
+
kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
|
159 |
+
)
|
160 |
+
kv_seq_len = value_states.shape[-2]
|
161 |
+
if past_key_value is not None:
|
162 |
+
if self.layer_idx is None:
|
163 |
+
raise ValueError(
|
164 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
165 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
166 |
+
"with a layer index."
|
167 |
+
)
|
168 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
169 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
170 |
+
|
171 |
+
q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
|
172 |
+
|
173 |
+
query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
174 |
+
query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
|
175 |
+
query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
|
176 |
+
|
177 |
+
key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
178 |
+
key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
|
179 |
+
key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
|
180 |
+
if past_key_value is not None:
|
181 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
182 |
+
key_states, value_states = past_key_value.update(
|
183 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
184 |
+
)
|
185 |
+
|
186 |
+
attn_weights = (
|
187 |
+
torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale
|
188 |
+
)
|
189 |
+
|
190 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
191 |
+
raise ValueError(
|
192 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
193 |
+
f" {attn_weights.size()}"
|
194 |
+
)
|
195 |
+
assert attention_mask is not None
|
196 |
+
if attention_mask is not None:
|
197 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
198 |
+
raise ValueError(
|
199 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
200 |
+
)
|
201 |
+
attn_weights = attn_weights + attention_mask
|
202 |
+
|
203 |
+
# upcast attention to fp32
|
204 |
+
attn_weights = nn.functional.softmax(
|
205 |
+
attn_weights, dim=-1, dtype=torch.float32
|
206 |
+
).to(query_states.dtype)
|
207 |
+
attn_weights = nn.functional.dropout(
|
208 |
+
attn_weights, p=self.attention_dropout, training=self.training
|
209 |
+
)
|
210 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
211 |
+
|
212 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
|
213 |
+
raise ValueError(
|
214 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
|
215 |
+
f" {attn_output.size()}"
|
216 |
+
)
|
217 |
+
|
218 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
219 |
+
|
220 |
+
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
|
221 |
+
|
222 |
+
attn_output = self.o_proj(attn_output)
|
223 |
+
|
224 |
+
if not output_attentions:
|
225 |
+
attn_weights = None
|
226 |
+
|
227 |
+
return attn_output, attn_weights, past_key_value
|
228 |
+
|
229 |
+
|
230 |
+
class LlamaMlaDecoderLayer(GradientCheckpointingLayer):
|
231 |
+
def __init__(self, config: LlamaMlaConfig, layer_idx: int):
|
232 |
+
super().__init__()
|
233 |
+
self.hidden_size = config.hidden_size
|
234 |
+
|
235 |
+
self.self_attn = LlamaMlaAttention(config=config, layer_idx=layer_idx)
|
236 |
+
|
237 |
+
self.mlp = LlamaMLP(config)
|
238 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
239 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
240 |
+
|
241 |
+
def forward(
|
242 |
+
self,
|
243 |
+
hidden_states: torch.Tensor,
|
244 |
+
attention_mask: Optional[torch.Tensor] = None,
|
245 |
+
position_ids: Optional[torch.LongTensor] = None,
|
246 |
+
past_key_value: Optional[Cache] = None,
|
247 |
+
output_attentions: Optional[bool] = False,
|
248 |
+
use_cache: Optional[bool] = False,
|
249 |
+
cache_position: Optional[torch.LongTensor] = None,
|
250 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
251 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
252 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
253 |
+
residual = hidden_states
|
254 |
+
hidden_states = self.input_layernorm(hidden_states)
|
255 |
+
|
256 |
+
# Self Attention
|
257 |
+
hidden_states, self_attn_weights = self.self_attn(
|
258 |
+
hidden_states=hidden_states,
|
259 |
+
attention_mask=attention_mask,
|
260 |
+
position_ids=position_ids,
|
261 |
+
past_key_value=past_key_value,
|
262 |
+
output_attentions=output_attentions,
|
263 |
+
use_cache=use_cache,
|
264 |
+
cache_position=cache_position,
|
265 |
+
position_embeddings=position_embeddings,
|
266 |
+
**kwargs,
|
267 |
+
)
|
268 |
+
hidden_states = residual + hidden_states
|
269 |
+
|
270 |
+
# Fully Connected
|
271 |
+
residual = hidden_states
|
272 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
273 |
+
hidden_states = self.mlp(hidden_states)
|
274 |
+
hidden_states = residual + hidden_states
|
275 |
+
|
276 |
+
outputs = (hidden_states,)
|
277 |
+
if output_attentions:
|
278 |
+
outputs += (self_attn_weights,)
|
279 |
+
|
280 |
+
return outputs
|
281 |
+
|
282 |
+
|
283 |
+
@auto_docstring
|
284 |
+
class LlamaMlaPreTrainedModel(PreTrainedModel):
|
285 |
+
config_class = LlamaMlaConfig
|
286 |
+
base_model_prefix = "model"
|
287 |
+
supports_gradient_checkpointing = True
|
288 |
+
_no_split_modules = ["LlamaMlaDecoderLayer"]
|
289 |
+
_skip_keys_device_placement = ["past_key_values"]
|
290 |
+
_supports_flash_attn_2 = True
|
291 |
+
_supports_sdpa = True
|
292 |
+
_supports_flex_attn = True
|
293 |
+
_supports_cache_class = True
|
294 |
+
_supports_quantized_cache = True
|
295 |
+
_supports_static_cache = True
|
296 |
+
_supports_attention_backend = True
|
297 |
+
|
298 |
+
def _init_weights(self, module):
|
299 |
+
std = self.config.initializer_range
|
300 |
+
if isinstance(module, nn.Linear):
|
301 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
302 |
+
if module.bias is not None:
|
303 |
+
module.bias.data.zero_()
|
304 |
+
elif isinstance(module, nn.Embedding):
|
305 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
306 |
+
if module.padding_idx is not None:
|
307 |
+
module.weight.data[module.padding_idx].zero_()
|
308 |
+
elif isinstance(module, LlamaRMSNorm):
|
309 |
+
module.weight.data.fill_(1.0)
|
310 |
+
|
311 |
+
|
312 |
+
@auto_docstring
|
313 |
+
class LlamaMlaModel(LlamaMlaPreTrainedModel):
|
314 |
+
def __init__(self, config: LlamaMlaConfig):
|
315 |
+
super().__init__(config)
|
316 |
+
self.padding_idx = config.pad_token_id
|
317 |
+
self.vocab_size = config.vocab_size
|
318 |
+
|
319 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
320 |
+
self.layers = nn.ModuleList(
|
321 |
+
[LlamaMlaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
322 |
+
)
|
323 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
324 |
+
self.rotary_emb = LlamaRotaryEmbedding(config=config)
|
325 |
+
self.gradient_checkpointing = False
|
326 |
+
|
327 |
+
# Initialize weights and apply final processing
|
328 |
+
self.post_init()
|
329 |
+
|
330 |
+
def get_input_embeddings(self):
|
331 |
+
return self.embed_tokens
|
332 |
+
|
333 |
+
def set_input_embeddings(self, value):
|
334 |
+
self.embed_tokens = value
|
335 |
+
|
336 |
+
@can_return_tuple
|
337 |
+
@auto_docstring
|
338 |
+
def forward(
|
339 |
+
self,
|
340 |
+
input_ids: Optional[torch.LongTensor] = None,
|
341 |
+
attention_mask: Optional[torch.Tensor] = None,
|
342 |
+
position_ids: Optional[torch.LongTensor] = None,
|
343 |
+
past_key_values: Optional[Cache] = None,
|
344 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
345 |
+
use_cache: Optional[bool] = None,
|
346 |
+
output_attentions: Optional[bool] = None,
|
347 |
+
output_hidden_states: Optional[bool] = None,
|
348 |
+
cache_position: Optional[torch.LongTensor] = None,
|
349 |
+
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
350 |
+
) -> BaseModelOutputWithPast:
|
351 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
352 |
+
output_hidden_states = (
|
353 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
354 |
+
)
|
355 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
356 |
+
|
357 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
358 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
359 |
+
|
360 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
361 |
+
logger.warning_once(
|
362 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
363 |
+
)
|
364 |
+
use_cache = False
|
365 |
+
|
366 |
+
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
|
367 |
+
if not isinstance(past_key_values, (type(None), Cache)):
|
368 |
+
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
|
369 |
+
|
370 |
+
if inputs_embeds is None:
|
371 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
372 |
+
|
373 |
+
if use_cache and past_key_values is None:
|
374 |
+
past_key_values = DynamicCache()
|
375 |
+
|
376 |
+
if cache_position is None:
|
377 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
378 |
+
cache_position = torch.arange(
|
379 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
380 |
+
)
|
381 |
+
|
382 |
+
if position_ids is None:
|
383 |
+
position_ids = cache_position.unsqueeze(0)
|
384 |
+
|
385 |
+
causal_mask = self._update_causal_mask(
|
386 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
387 |
+
)
|
388 |
+
|
389 |
+
hidden_states = inputs_embeds
|
390 |
+
|
391 |
+
# create position embeddings to be shared across the decoder layers
|
392 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
393 |
+
|
394 |
+
# decoder layers
|
395 |
+
all_hidden_states = () if output_hidden_states else None
|
396 |
+
all_self_attns = () if output_attentions else None
|
397 |
+
|
398 |
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
399 |
+
if output_hidden_states:
|
400 |
+
all_hidden_states += (hidden_states,)
|
401 |
+
|
402 |
+
layer_outputs = decoder_layer(
|
403 |
+
hidden_states,
|
404 |
+
attention_mask=causal_mask,
|
405 |
+
position_ids=position_ids,
|
406 |
+
past_key_value=past_key_values,
|
407 |
+
output_attentions=output_attentions,
|
408 |
+
use_cache=use_cache,
|
409 |
+
cache_position=cache_position,
|
410 |
+
position_embeddings=position_embeddings,
|
411 |
+
**flash_attn_kwargs,
|
412 |
+
)
|
413 |
+
|
414 |
+
hidden_states = layer_outputs[0]
|
415 |
+
|
416 |
+
if output_attentions:
|
417 |
+
all_self_attns += (layer_outputs[1],)
|
418 |
+
|
419 |
+
hidden_states = self.norm(hidden_states)
|
420 |
+
|
421 |
+
# add hidden states from the last decoder layer
|
422 |
+
if output_hidden_states:
|
423 |
+
all_hidden_states += (hidden_states,)
|
424 |
+
|
425 |
+
return BaseModelOutputWithPast(
|
426 |
+
last_hidden_state=hidden_states,
|
427 |
+
past_key_values=past_key_values if use_cache else None,
|
428 |
+
hidden_states=all_hidden_states,
|
429 |
+
attentions=all_self_attns,
|
430 |
+
)
|
431 |
+
|
432 |
+
def _update_causal_mask(
|
433 |
+
self,
|
434 |
+
attention_mask: Union[torch.Tensor, "BlockMask"],
|
435 |
+
input_tensor: torch.Tensor,
|
436 |
+
cache_position: torch.Tensor,
|
437 |
+
past_key_values: Cache,
|
438 |
+
output_attentions: bool = False,
|
439 |
+
):
|
440 |
+
if self.config._attn_implementation == "flash_attention_2":
|
441 |
+
if attention_mask is not None and (attention_mask == 0.0).any():
|
442 |
+
return attention_mask
|
443 |
+
return None
|
444 |
+
if self.config._attn_implementation == "flex_attention":
|
445 |
+
if isinstance(attention_mask, torch.Tensor):
|
446 |
+
attention_mask = make_flex_block_causal_mask(attention_mask)
|
447 |
+
return attention_mask
|
448 |
+
|
449 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
450 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
451 |
+
# to infer the attention mask.
|
452 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
453 |
+
using_compilable_cache = past_key_values.is_compileable if past_key_values is not None else False
|
454 |
+
|
455 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
456 |
+
if self.config._attn_implementation == "sdpa" and not using_compilable_cache and not output_attentions:
|
457 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
458 |
+
attention_mask,
|
459 |
+
inputs_embeds=input_tensor,
|
460 |
+
past_key_values_length=past_seen_tokens,
|
461 |
+
is_training=self.training,
|
462 |
+
):
|
463 |
+
return None
|
464 |
+
|
465 |
+
dtype = input_tensor.dtype
|
466 |
+
sequence_length = input_tensor.shape[1]
|
467 |
+
if using_compilable_cache:
|
468 |
+
target_length = past_key_values.get_max_cache_shape()
|
469 |
+
else:
|
470 |
+
target_length = (
|
471 |
+
attention_mask.shape[-1]
|
472 |
+
if isinstance(attention_mask, torch.Tensor)
|
473 |
+
else past_seen_tokens + sequence_length + 1
|
474 |
+
)
|
475 |
+
|
476 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
477 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
478 |
+
attention_mask,
|
479 |
+
sequence_length=sequence_length,
|
480 |
+
target_length=target_length,
|
481 |
+
dtype=dtype,
|
482 |
+
cache_position=cache_position,
|
483 |
+
batch_size=input_tensor.shape[0],
|
484 |
+
)
|
485 |
+
|
486 |
+
if (
|
487 |
+
self.config._attn_implementation == "sdpa"
|
488 |
+
and attention_mask is not None
|
489 |
+
and attention_mask.device.type in ["cuda", "xpu", "npu"]
|
490 |
+
and not output_attentions
|
491 |
+
):
|
492 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
493 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
494 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
495 |
+
min_dtype = torch.finfo(dtype).min
|
496 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
497 |
+
|
498 |
+
return causal_mask
|
499 |
+
|
500 |
+
@staticmethod
|
501 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
502 |
+
attention_mask: torch.Tensor,
|
503 |
+
sequence_length: int,
|
504 |
+
target_length: int,
|
505 |
+
dtype: torch.dtype,
|
506 |
+
cache_position: torch.Tensor,
|
507 |
+
batch_size: int,
|
508 |
+
**kwargs,
|
509 |
+
):
|
510 |
+
"""
|
511 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
512 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
513 |
+
|
514 |
+
Args:
|
515 |
+
attention_mask (`torch.Tensor`):
|
516 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
517 |
+
`(batch_size, 1, query_length, key_value_length)`.
|
518 |
+
sequence_length (`int`):
|
519 |
+
The sequence length being processed.
|
520 |
+
target_length (`int`):
|
521 |
+
The target length: when generating with static cache, the mask should be as long as the static cache,
|
522 |
+
to account for the 0 padding, the part of the cache that is not filled yet.
|
523 |
+
dtype (`torch.dtype`):
|
524 |
+
The dtype to use for the 4D attention mask.
|
525 |
+
cache_position (`torch.Tensor`):
|
526 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
527 |
+
batch_size (`torch.Tensor`):
|
528 |
+
Batch size.
|
529 |
+
"""
|
530 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
531 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
532 |
+
causal_mask = attention_mask
|
533 |
+
else:
|
534 |
+
min_dtype = torch.finfo(dtype).min
|
535 |
+
causal_mask = torch.full(
|
536 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
537 |
+
)
|
538 |
+
if sequence_length != 1:
|
539 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
540 |
+
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
541 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
542 |
+
if attention_mask is not None:
|
543 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
544 |
+
mask_length = attention_mask.shape[-1]
|
545 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
546 |
+
causal_mask.device
|
547 |
+
)
|
548 |
+
padding_mask = padding_mask == 0
|
549 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
550 |
+
padding_mask, min_dtype
|
551 |
+
)
|
552 |
+
|
553 |
+
return causal_mask
|
554 |
+
|
555 |
+
|
556 |
+
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
|
557 |
+
|
558 |
+
|
559 |
+
@auto_docstring
|
560 |
+
class LlamaMlaForCausalLM(LlamaMlaPreTrainedModel, GenerationMixin):
|
561 |
+
_tied_weights_keys = ["lm_head.weight"]
|
562 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
563 |
+
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
564 |
+
|
565 |
+
def __init__(self, config):
|
566 |
+
super().__init__(config)
|
567 |
+
self.model = LlamaMlaModel(config)
|
568 |
+
self.vocab_size = config.vocab_size
|
569 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
570 |
+
|
571 |
+
# Initialize weights and apply final processing
|
572 |
+
self.post_init()
|
573 |
+
|
574 |
+
def get_input_embeddings(self):
|
575 |
+
return self.model.embed_tokens
|
576 |
+
|
577 |
+
def set_input_embeddings(self, value):
|
578 |
+
self.model.embed_tokens = value
|
579 |
+
|
580 |
+
def get_output_embeddings(self):
|
581 |
+
return self.lm_head
|
582 |
+
|
583 |
+
def set_output_embeddings(self, new_embeddings):
|
584 |
+
self.lm_head = new_embeddings
|
585 |
+
|
586 |
+
def set_decoder(self, decoder):
|
587 |
+
self.model = decoder
|
588 |
+
|
589 |
+
def get_decoder(self):
|
590 |
+
return self.model
|
591 |
+
|
592 |
+
@can_return_tuple
|
593 |
+
@auto_docstring
|
594 |
+
def forward(
|
595 |
+
self,
|
596 |
+
input_ids: Optional[torch.LongTensor] = None,
|
597 |
+
attention_mask: Optional[torch.Tensor] = None,
|
598 |
+
position_ids: Optional[torch.LongTensor] = None,
|
599 |
+
past_key_values: Optional[Cache] = None,
|
600 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
601 |
+
labels: Optional[torch.LongTensor] = None,
|
602 |
+
use_cache: Optional[bool] = None,
|
603 |
+
output_attentions: Optional[bool] = None,
|
604 |
+
output_hidden_states: Optional[bool] = None,
|
605 |
+
cache_position: Optional[torch.LongTensor] = None,
|
606 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
607 |
+
**kwargs: Unpack[KwargsForCausalLM],
|
608 |
+
) -> CausalLMOutputWithPast:
|
609 |
+
r"""
|
610 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
611 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
612 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
613 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
614 |
+
|
615 |
+
Example:
|
616 |
+
|
617 |
+
```python
|
618 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
619 |
+
|
620 |
+
>>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
|
621 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
622 |
+
|
623 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
624 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
625 |
+
|
626 |
+
>>> # Generate
|
627 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
628 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
629 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
630 |
+
```"""
|
631 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
632 |
+
output_hidden_states = (
|
633 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
634 |
+
)
|
635 |
+
|
636 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
637 |
+
outputs: BaseModelOutputWithPast = self.model(
|
638 |
+
input_ids=input_ids,
|
639 |
+
attention_mask=attention_mask,
|
640 |
+
position_ids=position_ids,
|
641 |
+
past_key_values=past_key_values,
|
642 |
+
inputs_embeds=inputs_embeds,
|
643 |
+
use_cache=use_cache,
|
644 |
+
output_attentions=output_attentions,
|
645 |
+
output_hidden_states=output_hidden_states,
|
646 |
+
cache_position=cache_position,
|
647 |
+
**kwargs,
|
648 |
+
)
|
649 |
+
|
650 |
+
hidden_states = outputs.last_hidden_state
|
651 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
652 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
653 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
654 |
+
|
655 |
+
loss = None
|
656 |
+
if labels is not None:
|
657 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
658 |
+
|
659 |
+
return CausalLMOutputWithPast(
|
660 |
+
loss=loss,
|
661 |
+
logits=logits,
|
662 |
+
past_key_values=outputs.past_key_values,
|
663 |
+
hidden_states=outputs.hidden_states,
|
664 |
+
attentions=outputs.attentions,
|
665 |
+
)
|
666 |
+
|
667 |
+
__all__ = [
|
668 |
+
"LlamaMlaForCausalLM",
|
669 |
+
"LlamaMlaModel",
|
670 |
+
"LlamaMlaPreTrainedModel",
|
671 |
+
]
|