Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,137 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
---
|
| 4 |
+
# FaceScore
|
| 5 |
+
|
| 6 |
+
<p align="center">
|
| 7 |
+
📃 <a href="https://arxiv.org/abs/2406.17100" target="_blank">Paper</a> • 🤗 <a href="https://huggingface.co/OPPOer/FaceScore" target="_blank">Checkpoints</a>
|
| 8 |
+
</p>
|
| 9 |
+
|
| 10 |
+
**FaceScore: Benchmarking and Enhancing Face Quality in Human Generation**
|
| 11 |
+
|
| 12 |
+
Traditional facial quality assessment focuses on whether a face is suitable for recognition, while image aesthetic scorers emphasize overall aesthetics rather than details. FaceScore is the first reward model that focuses on faces in text-to-image models, designed to score the faces generated in images. It is fine-tuned on positive and negative sample pairs generated using an inpainting pipeline based on real face images and surpasses previous models in predicting human preferences for generated faces.
|
| 13 |
+
|
| 14 |
+
- [Install Dependency](#install-dependency)
|
| 15 |
+
- [Example Use](#example-use)
|
| 16 |
+
- [LoRA base on SDXL](#lora-based-on-sdxl)
|
| 17 |
+
- [Acknowledgement](#acknowledgement)
|
| 18 |
+
- [Citation](#citation)
|
| 19 |
+
|
| 20 |
+
## Install Dependency
|
| 21 |
+
|
| 22 |
+
This codebase relies heavily on [ImageReward](https://github.com/THUDM/ImageReward).
|
| 23 |
+
Please follow the instruction in it.
|
| 24 |
+
Besides, we introduce two addtional package.
|
| 25 |
+
You can install them as following:
|
| 26 |
+
```
|
| 27 |
+
pip install batch-face image-reward
|
| 28 |
+
```
|
| 29 |
+
|
| 30 |
+
## Example Use
|
| 31 |
+
|
| 32 |
+
We provide an example inference script in the directory of this repo.
|
| 33 |
+
We also provide a real face image for testing. Note that the model can also score real face in the image, and no need to provide a specific prompt.
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
Use the following code to get the human preference scores from ImageReward:
|
| 37 |
+
|
| 38 |
+
```python
|
| 39 |
+
from FaceScore.FaceScore import FaceScore
|
| 40 |
+
import os
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
face_score_model = FaceScore('FaceScore')
|
| 44 |
+
# load locally
|
| 45 |
+
# face_score_model = FaceScore(path_to_checkpoint,med_config = path_to_config)
|
| 46 |
+
|
| 47 |
+
img_path = 'assets/Lecun.jpg'
|
| 48 |
+
face_score,box,confidences = face_score_model.get_reward(img_path)
|
| 49 |
+
print(f'The face score of {img_path} is {face_score}, and the bounding box of the face(s) is {box}')
|
| 50 |
+
|
| 51 |
+
```
|
| 52 |
+
You can also choose to load the model locally, after downloading the checkpoint in [FaceScore](https://huggingface.co/OPPOer/FaceScore/tree/main).
|
| 53 |
+
|
| 54 |
+
The output should be like as follow (the exact numbers may be slightly different depending on the compute device):
|
| 55 |
+
|
| 56 |
+
```
|
| 57 |
+
The face score of assets/Lecun.jpg is 3.993915319442749, and the bounding box of the faces is [[104.02845764160156, 28.232379913330078, 143.57421875, 78.53730773925781]]
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
## LoRA based on SDXL
|
| 62 |
+
We leverage FaceScore to filter data and perform direct preference optimization on SDXL.
|
| 63 |
+
The LoRA weight is [here](https://huggingface.co/OPPOer/FaceScore/tree/main).
|
| 64 |
+
Here we provide a quick example:
|
| 65 |
+
```
|
| 66 |
+
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel
|
| 67 |
+
import torch
|
| 68 |
+
|
| 69 |
+
# load pipeline
|
| 70 |
+
inference_dtype = torch.float16
|
| 71 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 72 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 73 |
+
torch_dtype=inference_dtype,
|
| 74 |
+
)
|
| 75 |
+
vae = AutoencoderKL.from_pretrained(
|
| 76 |
+
'madebyollin/sdxl-vae-fp16-fix',
|
| 77 |
+
torch_dtype=inference_dtype,
|
| 78 |
+
)
|
| 79 |
+
pipe.vae = vae
|
| 80 |
+
# You can load it locally
|
| 81 |
+
pipe.load_lora_weights("OPPOer/FaceScore/FaceLoRA")
|
| 82 |
+
pipe.to('cuda')
|
| 83 |
+
|
| 84 |
+
generator=torch.Generator(device='cuda').manual_seed(42)
|
| 85 |
+
image = pipe(
|
| 86 |
+
prompt='A woman in a costume standing in the desert',
|
| 87 |
+
guidance_scale=5.0,
|
| 88 |
+
generator=generator,
|
| 89 |
+
output_type='pil',
|
| 90 |
+
).images[0]
|
| 91 |
+
image.save('A woman in a costume standing in the desert.png')
|
| 92 |
+
```
|
| 93 |
+
We provide some examples generated by ours (right) and compare with the original SDXL (left) below.
|
| 94 |
+
<div style="display: flex; justify-content: space-around; text-align: center;">
|
| 95 |
+
<div style="text-align: center;">
|
| 96 |
+
<img src="assets/desert.jpg" alt="图片1" style="width: 600px;" />
|
| 97 |
+
<p>A woman in a costume standing in the desert. </p>
|
| 98 |
+
</div>
|
| 99 |
+
<div style="text-align: center;">
|
| 100 |
+
<img src="assets/scarf.jpg" alt="图片2" style="width: 600px;" />
|
| 101 |
+
<p>A woman wearing a blue jacket and scarf.</p>
|
| 102 |
+
</div>
|
| 103 |
+
</div>
|
| 104 |
+
<div style="display: flex; justify-content: space-around; text-align: center;">
|
| 105 |
+
<div style="text-align: center;">
|
| 106 |
+
<img src="assets/stage.jpg" alt="图片1" style="width: 600px;" />
|
| 107 |
+
<p>A young woman in a blue dress performing on stage. </p>
|
| 108 |
+
</div>
|
| 109 |
+
<div style="text-align: center;">
|
| 110 |
+
<img src="assets/striped.jpg" alt="图片2" style="width: 600px;" />
|
| 111 |
+
<p>A woman with black hair and a striped shirt.</p>
|
| 112 |
+
</div>
|
| 113 |
+
</div>
|
| 114 |
+
<div style="display: flex; justify-content: space-around; text-align: center;">
|
| 115 |
+
<div style="text-align: center;">
|
| 116 |
+
<img src="assets/sword.jpg" alt="图片1" style="width: 600px;" />
|
| 117 |
+
<p>A woman with white hair and white armor is holding a sword. </p>
|
| 118 |
+
</div>
|
| 119 |
+
<div style="text-align: center;">
|
| 120 |
+
<img src="assets/white.jpg" alt="图片2" style="width: 600px;" />
|
| 121 |
+
<p>A woman with long black hair and a white shirt.</p>
|
| 122 |
+
</div>
|
| 123 |
+
</div>
|
| 124 |
+
|
| 125 |
+
## Acknowledgement
|
| 126 |
+
Our codebase references the code from [ImageReward](https://github.com/THUDM/ImageReward). We extend our gratitude to the authors for open-sourcing their codes.
|
| 127 |
+
|
| 128 |
+
## Citation
|
| 129 |
+
|
| 130 |
+
```
|
| 131 |
+
@article{liao2024facescore,
|
| 132 |
+
title={FaceScore: Benchmarking and Enhancing Face Quality in Human Generation},
|
| 133 |
+
author={Liao, Zhenyi and Xie, Qingsong and Chen, Chen and Lu, Hannan and Deng, Zhijie},
|
| 134 |
+
journal={arXiv preprint arXiv:2406.17100},
|
| 135 |
+
year={2024}
|
| 136 |
+
|
| 137 |
+
```
|