Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,438 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
+
base_model:
|
6 |
+
- stabilityai/stable-diffusion-3-medium
|
7 |
+
pipeline_tag: text-to-image
|
8 |
+
---
|
9 |
+
|
10 |
+
|
11 |
+
![FLUX.1 [schnell] Grid](./PEA-Diffusion.png)
|
12 |
+
|
13 |
+
`MultilingualSD3-adapter` is a multilingual adapter tailored for the [SD3](https://huggingface.co/stabilityai/stable-diffusion-3-medium). Originating from an ECCV 2024 paper titled [PEA-Diffusion](https://arxiv.org/abs/2311.17086). The open-source code is available at https://github.com/OPPO-Mente-Lab/PEA-Diffusion.
|
14 |
+
|
15 |
+
|
16 |
+
# Usage
|
17 |
+
We used the multilingual encoder [umt5-xxl](https://huggingface.co/google/umt5-xxl),[Mul-OpenCLIP](https://huggingface.co/laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k) and [HunyuanDiT_CLIP](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i). We implemented a reverse denoising process for distillation training.
|
18 |
+
|
19 |
+
|
20 |
+
## `MultilingualSD3`
|
21 |
+
|
22 |
+
|
23 |
+
```python
|
24 |
+
import os
|
25 |
+
import torch
|
26 |
+
import torch.nn as nn
|
27 |
+
|
28 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
29 |
+
import inspect
|
30 |
+
from diffusers.models.transformers import SD3Transformer2DModel
|
31 |
+
from diffusers.image_processor import VaeImageProcessor
|
32 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
33 |
+
from diffusers import AutoencoderKL
|
34 |
+
from tqdm import tqdm
|
35 |
+
from PIL import Image
|
36 |
+
|
37 |
+
from transformers import T5Tokenizer,T5EncoderModel,BertModel, BertTokenizer
|
38 |
+
import open_clip
|
39 |
+
|
40 |
+
|
41 |
+
class MLP(nn.Module):
|
42 |
+
def __init__(self, in_dim=1024, out_dim=2048, hidden_dim=2048, out_dim1=4096, use_residual=True):
|
43 |
+
super().__init__()
|
44 |
+
if use_residual:
|
45 |
+
assert in_dim == out_dim
|
46 |
+
self.layernorm = nn.LayerNorm(in_dim)
|
47 |
+
self.projector = nn.Sequential(
|
48 |
+
nn.Linear(in_dim, hidden_dim, bias=False),
|
49 |
+
nn.GELU(),
|
50 |
+
nn.Linear(hidden_dim, hidden_dim, bias=False),
|
51 |
+
nn.GELU(),
|
52 |
+
nn.Linear(hidden_dim, hidden_dim, bias=False),
|
53 |
+
nn.GELU(),
|
54 |
+
nn.Linear(hidden_dim, out_dim, bias=False),
|
55 |
+
)
|
56 |
+
self.fc = nn.Linear(out_dim, out_dim1)
|
57 |
+
self.use_residual = use_residual
|
58 |
+
def forward(self, x):
|
59 |
+
residual = x
|
60 |
+
x = self.layernorm(x)
|
61 |
+
x = self.projector(x)
|
62 |
+
x2 = nn.GELU()(x)
|
63 |
+
x2 = self.fc(x2)
|
64 |
+
return x2
|
65 |
+
|
66 |
+
class Transformer(nn.Module):
|
67 |
+
def __init__(self, d_model, n_heads, out_dim1, out_dim2,num_layers=1) -> None:
|
68 |
+
super().__init__()
|
69 |
+
|
70 |
+
self.encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=n_heads, dim_feedforward=2048, batch_first=True)
|
71 |
+
self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers)
|
72 |
+
self.linear1 = nn.Linear(d_model, out_dim1)
|
73 |
+
self.linear2 = nn.Linear(d_model, out_dim2)
|
74 |
+
|
75 |
+
def forward(self, x):
|
76 |
+
x = self.transformer_encoder(x)
|
77 |
+
x1 = self.linear1(x)
|
78 |
+
x1 = torch.mean(x1,1)
|
79 |
+
x2 = self.linear2(x)
|
80 |
+
return x1,x2
|
81 |
+
|
82 |
+
|
83 |
+
def image_grid(imgs, rows, cols):
|
84 |
+
assert len(imgs) == rows*cols
|
85 |
+
|
86 |
+
w, h = imgs[0].size
|
87 |
+
grid = Image.new('RGB', size=(cols*w, rows*h))
|
88 |
+
grid_w, grid_h = grid.size
|
89 |
+
|
90 |
+
for i, img in enumerate(imgs):
|
91 |
+
grid.paste(img, box=(i%cols*w, i//cols*h))
|
92 |
+
return grid
|
93 |
+
def retrieve_timesteps(
|
94 |
+
scheduler,
|
95 |
+
num_inference_steps: Optional[int] = None,
|
96 |
+
device: Optional[Union[str, torch.device]] = None,
|
97 |
+
timesteps: Optional[List[int]] = None,
|
98 |
+
sigmas: Optional[List[float]] = None,
|
99 |
+
**kwargs,
|
100 |
+
):
|
101 |
+
if timesteps is not None and sigmas is not None:
|
102 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
103 |
+
if timesteps is not None:
|
104 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
105 |
+
if not accepts_timesteps:
|
106 |
+
raise ValueError(
|
107 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
108 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
109 |
+
)
|
110 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
111 |
+
timesteps = scheduler.timesteps
|
112 |
+
num_inference_steps = len(timesteps)
|
113 |
+
elif sigmas is not None:
|
114 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
115 |
+
if not accept_sigmas:
|
116 |
+
raise ValueError(
|
117 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
118 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
119 |
+
)
|
120 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
121 |
+
timesteps = scheduler.timesteps
|
122 |
+
num_inference_steps = len(timesteps)
|
123 |
+
else:
|
124 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
125 |
+
timesteps = scheduler.timesteps
|
126 |
+
return timesteps, num_inference_steps
|
127 |
+
|
128 |
+
class StableDiffusionTest():
|
129 |
+
def __init__(self,model_path,text_encoder_path,text_encoder_path1,text_encoder_path2,proj_path,proj_t5_path):
|
130 |
+
super().__init__()
|
131 |
+
self.transformer = SD3Transformer2DModel.from_pretrained(model_path, subfolder="transformer",torch_dtype=dtype).to(device)
|
132 |
+
self.vae = AutoencoderKL.from_pretrained(model_path, subfolder="vae").to(device,dtype=dtype)
|
133 |
+
self.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_path, subfolder="scheduler")
|
134 |
+
|
135 |
+
self.vae_scale_factor = (
|
136 |
+
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
137 |
+
)
|
138 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
139 |
+
self.default_sample_size = (
|
140 |
+
self.transformer.config.sample_size
|
141 |
+
if hasattr(self, "transformer") and self.transformer is not None
|
142 |
+
else 128
|
143 |
+
)
|
144 |
+
|
145 |
+
self.text_encoder_t5 = T5EncoderModel.from_pretrained(text_encoder_path).to(device,dtype=dtype)
|
146 |
+
self.tokenizer_t5 = T5Tokenizer.from_pretrained(text_encoder_path)
|
147 |
+
self.text_encoder = BertModel.from_pretrained(f"{text_encoder_path1}/clip_text_encoder", False, revision=None).to(device,dtype=dtype)
|
148 |
+
self.tokenizer = BertTokenizer.from_pretrained(f"{text_encoder_path1}/tokenizer")
|
149 |
+
|
150 |
+
self.text_encoder2, _, _ = open_clip.create_model_and_transforms('xlm-roberta-large-ViT-H-14', pretrained=text_encoder_path2)
|
151 |
+
self.tokenizer2 = open_clip.get_tokenizer('xlm-roberta-large-ViT-H-14')
|
152 |
+
self.text_encoder2.text.output_tokens = True
|
153 |
+
self.text_encoder2 = self.text_encoder2.to(device,dtype=dtype)
|
154 |
+
|
155 |
+
self.proj = MLP(2048, 2048, 2048, 4096, use_residual=False).to(device,dtype=dtype)
|
156 |
+
self.proj.load_state_dict(torch.load(proj_path, map_location="cpu"))
|
157 |
+
self.proj_t5 = Transformer(d_model=4096, n_heads=8, out_dim1=2048, out_dim2=4096).to(device,dtype=dtype)
|
158 |
+
self.proj_t5.load_state_dict(torch.load(proj_t5_path, map_location="cpu"))
|
159 |
+
|
160 |
+
def encode_prompt(self, prompt, device, do_classifier_free_guidance=True, negative_prompt=None):
|
161 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
162 |
+
text_input_ids_t5 = self.tokenizer_t5(
|
163 |
+
prompt,
|
164 |
+
padding="max_length",
|
165 |
+
max_length=77,
|
166 |
+
truncation=True,
|
167 |
+
add_special_tokens=False,
|
168 |
+
return_tensors="pt",
|
169 |
+
).input_ids.to(device)
|
170 |
+
|
171 |
+
text_embeddings = self.text_encoder_t5(text_input_ids_t5)
|
172 |
+
text_inputs = self.tokenizer(
|
173 |
+
prompt,
|
174 |
+
padding="max_length",
|
175 |
+
max_length=77,
|
176 |
+
truncation=True,
|
177 |
+
return_tensors="pt",
|
178 |
+
)
|
179 |
+
input_ids = text_inputs.input_ids.to(device)
|
180 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
181 |
+
encoder_hidden_states = self.text_encoder(input_ids,attention_mask=attention_mask)[0]
|
182 |
+
text_input_ids = self.tokenizer2(prompt).to(device)
|
183 |
+
_,encoder_hidden_states2 = self.text_encoder2.encode_text(text_input_ids)
|
184 |
+
encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states2], dim=-1)
|
185 |
+
|
186 |
+
encoder_hidden_states_t5 = text_embeddings[0]
|
187 |
+
encoder_hidden_states = self.proj(encoder_hidden_states)
|
188 |
+
|
189 |
+
add_text_embeds,encoder_hidden_states_t5 = self.proj_t5(encoder_hidden_states_t5.half())
|
190 |
+
prompt_embeds = torch.cat([encoder_hidden_states, encoder_hidden_states_t5], dim=-2)
|
191 |
+
|
192 |
+
# get unconditional embeddings for classifier free guidance
|
193 |
+
if do_classifier_free_guidance:
|
194 |
+
if negative_prompt is None:
|
195 |
+
uncond_tokens = [""] * batch_size
|
196 |
+
else:
|
197 |
+
uncond_tokens = negative_prompt
|
198 |
+
text_input_ids_t5 = self.tokenizer_t5(
|
199 |
+
uncond_tokens,
|
200 |
+
padding="max_length",
|
201 |
+
max_length=77,
|
202 |
+
truncation=True,
|
203 |
+
add_special_tokens=False,
|
204 |
+
return_tensors="pt",
|
205 |
+
).input_ids.to(device)
|
206 |
+
|
207 |
+
text_embeddings = self.text_encoder_t5(text_input_ids_t5)
|
208 |
+
text_inputs = self.tokenizer(
|
209 |
+
uncond_tokens,
|
210 |
+
padding="max_length",
|
211 |
+
max_length=77,
|
212 |
+
truncation=True,
|
213 |
+
return_tensors="pt",
|
214 |
+
)
|
215 |
+
input_ids = text_inputs.input_ids.to(device)
|
216 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
217 |
+
encoder_hidden_states = self.text_encoder(input_ids,attention_mask=attention_mask)[0]
|
218 |
+
|
219 |
+
text_input_ids = self.tokenizer2(uncond_tokens).to(device)
|
220 |
+
_,encoder_hidden_states2 = self.text_encoder2.encode_text(text_input_ids)
|
221 |
+
encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states2], dim=-1)
|
222 |
+
|
223 |
+
encoder_hidden_states_t5 = text_embeddings[0]
|
224 |
+
encoder_hidden_states_uncond = self.proj(encoder_hidden_states)
|
225 |
+
|
226 |
+
add_text_embeds_uncond,encoder_hidden_states_t5_uncond = self.proj_t5(encoder_hidden_states_t5.half())
|
227 |
+
prompt_embeds_uncond = torch.cat([encoder_hidden_states_uncond, encoder_hidden_states_t5_uncond], dim=-2)
|
228 |
+
|
229 |
+
prompt_embeds = torch.cat([prompt_embeds_uncond, prompt_embeds], dim=0)
|
230 |
+
pooled_prompt_embeds = torch.cat([add_text_embeds_uncond, add_text_embeds], dim=0)
|
231 |
+
|
232 |
+
return prompt_embeds,pooled_prompt_embeds
|
233 |
+
|
234 |
+
|
235 |
+
def prepare_latents(
|
236 |
+
self,
|
237 |
+
batch_size,
|
238 |
+
num_channels_latents,
|
239 |
+
height,
|
240 |
+
width,
|
241 |
+
dtype,
|
242 |
+
device,
|
243 |
+
generator,
|
244 |
+
latents=None,
|
245 |
+
):
|
246 |
+
if latents is not None:
|
247 |
+
return latents.to(device=device, dtype=dtype)
|
248 |
+
|
249 |
+
shape = (
|
250 |
+
batch_size,
|
251 |
+
num_channels_latents,
|
252 |
+
int(height) // self.vae_scale_factor,
|
253 |
+
int(width) // self.vae_scale_factor,
|
254 |
+
)
|
255 |
+
|
256 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
257 |
+
raise ValueError(
|
258 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
259 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
260 |
+
)
|
261 |
+
|
262 |
+
latents = torch.randn(shape, generator=generator, dtype=dtype).to(device)
|
263 |
+
|
264 |
+
return latents
|
265 |
+
|
266 |
+
@property
|
267 |
+
def guidance_scale(self):
|
268 |
+
return self._guidance_scale
|
269 |
+
|
270 |
+
@property
|
271 |
+
def clip_skip(self):
|
272 |
+
return self._clip_skip
|
273 |
+
|
274 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
275 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
276 |
+
# corresponds to doing no classifier free guidance.
|
277 |
+
@property
|
278 |
+
def do_classifier_free_guidance(self):
|
279 |
+
return self._guidance_scale > 1
|
280 |
+
|
281 |
+
@property
|
282 |
+
def joint_attention_kwargs(self):
|
283 |
+
return self._joint_attention_kwargs
|
284 |
+
|
285 |
+
@property
|
286 |
+
def num_timesteps(self):
|
287 |
+
return self._num_timesteps
|
288 |
+
|
289 |
+
@property
|
290 |
+
def interrupt(self):
|
291 |
+
return self._interrupt
|
292 |
+
|
293 |
+
@torch.no_grad()
|
294 |
+
def __call__(
|
295 |
+
self,
|
296 |
+
prompt: Union[str, List[str]] = None,
|
297 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
298 |
+
prompt_3: Optional[Union[str, List[str]]] = None,
|
299 |
+
height: Optional[int] = None,
|
300 |
+
width: Optional[int] = None,
|
301 |
+
num_inference_steps: int = 28,
|
302 |
+
timesteps: List[int] = None,
|
303 |
+
guidance_scale: float = 7.0,
|
304 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
305 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
306 |
+
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
307 |
+
num_images_per_prompt: Optional[int] = 1,
|
308 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
309 |
+
latents: Optional[torch.FloatTensor] = None,
|
310 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
311 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
312 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
313 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
314 |
+
output_type: Optional[str] = "pil",
|
315 |
+
return_dict: bool = True,
|
316 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
317 |
+
clip_skip: Optional[int] = None,
|
318 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
319 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
320 |
+
):
|
321 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
322 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
323 |
+
|
324 |
+
self._guidance_scale = guidance_scale
|
325 |
+
self._clip_skip = clip_skip
|
326 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
327 |
+
self._interrupt = False
|
328 |
+
|
329 |
+
if prompt is not None and isinstance(prompt, str):
|
330 |
+
batch_size = 1
|
331 |
+
elif prompt is not None and isinstance(prompt, list):
|
332 |
+
batch_size = len(prompt)
|
333 |
+
else:
|
334 |
+
batch_size = prompt_embeds.shape[0]
|
335 |
+
|
336 |
+
|
337 |
+
prompt_embeds,pooled_prompt_embeds = self.encode_prompt(prompt, device)
|
338 |
+
|
339 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
340 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
341 |
+
self._num_timesteps = len(timesteps)
|
342 |
+
|
343 |
+
num_channels_latents = self.transformer.config.in_channels
|
344 |
+
latents = self.prepare_latents(
|
345 |
+
batch_size * num_images_per_prompt,
|
346 |
+
num_channels_latents,
|
347 |
+
height,
|
348 |
+
width,
|
349 |
+
prompt_embeds.dtype,
|
350 |
+
device,
|
351 |
+
generator,
|
352 |
+
latents,
|
353 |
+
)
|
354 |
+
|
355 |
+
for i, t in tqdm(enumerate(timesteps)):
|
356 |
+
if self.interrupt:
|
357 |
+
continue
|
358 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
359 |
+
timestep = t.expand(latent_model_input.shape[0]).to(dtype=dtype)
|
360 |
+
|
361 |
+
noise_pred = self.transformer(
|
362 |
+
hidden_states=latent_model_input,
|
363 |
+
timestep=timestep,
|
364 |
+
encoder_hidden_states=prompt_embeds.to(dtype=self.transformer.dtype),
|
365 |
+
pooled_projections=pooled_prompt_embeds.to(dtype=self.transformer.dtype),
|
366 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
367 |
+
return_dict=False,
|
368 |
+
)[0]
|
369 |
+
|
370 |
+
if self.do_classifier_free_guidance:
|
371 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
372 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
373 |
+
|
374 |
+
latents_dtype = latents.dtype
|
375 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
376 |
+
|
377 |
+
if latents.dtype != latents_dtype:
|
378 |
+
if torch.backends.mps.is_available():
|
379 |
+
latents = latents.to(latents_dtype)
|
380 |
+
|
381 |
+
if callback_on_step_end is not None:
|
382 |
+
callback_kwargs = {}
|
383 |
+
for k in callback_on_step_end_tensor_inputs:
|
384 |
+
callback_kwargs[k] = locals()[k]
|
385 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
386 |
+
|
387 |
+
latents = callback_outputs.pop("latents", latents)
|
388 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
389 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
390 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
391 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
392 |
+
)
|
393 |
+
|
394 |
+
if output_type == "latent":
|
395 |
+
image = latents
|
396 |
+
else:
|
397 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
398 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
399 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
400 |
+
|
401 |
+
return image
|
402 |
+
|
403 |
+
|
404 |
+
if __name__ == '__main__':
|
405 |
+
device = "cuda"
|
406 |
+
dtype = torch.float16
|
407 |
+
|
408 |
+
text_encoder_path = 'google/umt5-xxl'
|
409 |
+
text_encoder_path1 = "Tencent-Hunyuan/HunyuanDiT/t2i"
|
410 |
+
text_encoder_path2 = 'laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k/open_clip_pytorch_model.bin'
|
411 |
+
|
412 |
+
model_path = "stabilityai/stable-diffusion-3-medium-diffusers"
|
413 |
+
proj_path = "OPPOer/MultilingualSD3-adapter/pytorch_model.bin"
|
414 |
+
proj_t5_path = "OPPOer/MultilingualSD3-adapter/pytorch_model_t5.bin"
|
415 |
+
|
416 |
+
sdt = StableDiffusionTest(model_path,text_encoder_path,text_encoder_path1,text_encoder_path2,proj_path,proj_t5_path)
|
417 |
+
|
418 |
+
batch=2
|
419 |
+
height = 1024
|
420 |
+
width = 1024
|
421 |
+
while True:
|
422 |
+
raw_text = input("\nPlease Input Query (stop to exit) >>> ")
|
423 |
+
if not raw_text:
|
424 |
+
print('Query should not be empty!')
|
425 |
+
continue
|
426 |
+
if raw_text == "stop":
|
427 |
+
break
|
428 |
+
images = sdt([raw_text]*batch,height=height,width=width)
|
429 |
+
grid = image_grid(images, rows=1, cols=batch)
|
430 |
+
grid.save("MultilingualSD3.png")
|
431 |
+
|
432 |
+
|
433 |
+
```
|
434 |
+
To learn more check out the [diffusers](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux) documentation
|
435 |
+
|
436 |
+
|
437 |
+
# License
|
438 |
+
The adapter itself is Apache License 2.0, but it must follow the license of the main model.
|